计算机科学 ›› 2013, Vol. 40 ›› Issue (6): 219-224.

• 人工智能 • 上一篇    下一篇

文本挖掘的时态文本关联规则算法研究

张春燕,孟志青,袁沛   

  1. 浙江工业大学经贸管理学院 杭州310023;浙江工业大学经贸管理学院 杭州310023;浙江大学机械工程学系 杭州310007
  • 出版日期:2018-11-16 发布日期:2018-11-16

Mining Algorithm for Temporal Text Association Rules in Text Mining

ZHANG Chun-yan,MENG Zhi-qing and YUAN Pei   

  • Online:2018-11-16 Published:2018-11-16

摘要: 由于数据库的频繁更新,时态数据库隐藏了大量的未知信息,因此针对实时更新的数据库应产生相应的时态关联规则。虽然关联规则算法已经被深入广泛地研究,但在文本数据中时态关联规则算法的研究还不多见。在深入了解时态关联规则算法及其在文本数据中的研究价值后,以时态文本为对象进行了时态关联规则算法的研究,建立了时态文本数据的时间表示模型,提出了文本时态关联规则算法SPFM,最后通过实验对算法进行了有效性验证,结果表明该算法是正确可行的。

关键词: 文本,时态,关联规则,垂直数据,有效时间,浮动

Abstract: Due to the frequent updates of the database,temporal database has hidden a lot of unknown information.Thus,temporal association rules for updating database should be generated.Although the association rules algorithm has been intensively studied,temporal association rules algorithm for the text data is also unusual.In this paper,we studied temporal association rules algorithm for the text,and established the temporal model for text.Then we presented mining algorithm SPFM for temporal text association rules.Finally,we got an experiment to check the effectiveness of the algorithm.

Key words: Text,Temporal,Association rules,Vertical data,Effective time,Float

[1] 潘定.持续时态数据挖掘及其实现机制[M].北京:经济科学出版社,2008:36
[2] Agrawal R,Raloutsos C,Swami A. Efficient Similarity Search in Sequence Databases[C]∥Proc. of the 4th International Conference on Foudations of Data Organization and Algorithms.Berlin,Germany:Springer-Verlag,1993:63-84
[3] 彭丽芳. 基于SVM的时态数据挖掘研究[D]. 湘潭:湘潭大学,2006
[4] Gharib T F,Nassar H. An efficient algorithm for incremental mining of temporal association rules[J]. Mohamed Taha,Ajith Abraham Data Knowl. Eng., 2010,69(8):800-815
[5] Lee C-H,Lin C-R,Chen M-S. On Ming General Temporal Association Rule in Publication of database[C]∥ICDM.2002:25
[6] Chen M,Chen S-C,Shyu M-L.Hierarchical Temporal Association Mining for Video Event Detection in Video Databases[C]∥IEEE.2006:2150-2154
[7] Byon L-N,Han J-H.Fast for Temporal Association Rule in a Large Database. Key Engineering Materials [C]∥IEEE.2005:279
[8] 韩普,王东波,路高飞. Stemming和Lemmatization对英文文本聚类的研究影响[J].信息系统,2012(7):109-113
[9] 孟志青.时态数据采掘中的时态型与时间粒度研究[J].湘潭大学自然科学学报,2000,22(3):1
[10] 宁慧. 基于时态约束的关联规则挖掘方法研究[D].哈尔滨:哈尔滨工程大学,2007
[11] Tansel A U, Imberman S P.Discovery of Association in Temoral Databases[C]∥IEEE.2007:25

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!