计算机科学 ›› 2013, Vol. 40 ›› Issue (7): 131-137.

• 软件与数据库技术 • 上一篇    下一篇

陆空通话标准用语(英语)的语音指令识别技术研究

刘万凤,胡军,袁伟伟   

  1. 南京航空航天大学计算机科学与技术学院 南京210016;南京航空航天大学计算机科学与技术学院 南京210016;南京大学计算机软件新技术国家重点实验室 南京210093;南京航空航天大学计算机科学与技术学院 南京210016
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受四川省科技支撑计划项目(2012GZ0001),四川师范大学科研项目(13KYL06),上海市科学技术委员会基金项目(11511505300)资助

Research on Technology of Voice Instruction Recognition for Air Traffic Control Communication

LIU Wan-feng,HU Jun and YUAN Wei-wei   

  • Online:2018-11-16 Published:2018-11-16

摘要: 陆空通话标准用语(英语)的训练是空管模拟训练中的重要内容。对空管模拟训练中的语音指令自动识别问题进行了分析研究,包括:陆空通话标准用语基本特征的分析、语言模型的文法描述、指令特殊发音的识别处理、识别后处理方法以及声学模型训练方法等,并基于Sphinx-4语音识别引擎,设计实现了一个语音指令识别系统AIRS(ATC Instruction Recognizer System)。系统实验数据分析表明,声学模型训练后的语音识别正确率可以达到空管模拟训练的需求。

关键词: 语音识别,ATC指令识别,Sphinx-4,陆空通话 中图法分类号TP31文献标识码A

Abstract: Training of air traffic control(ATC) communication in English is the main content of ATC simulator trai-ning.This paper focused on the voice instruction recognition in ATC simulator training which includes the analysis of the basic characteristics of ATC communication,the grammar description for language model,the recognition processing in special pronunciation of instruction,the processing method after recognition and the way of acoustic model adapting.Based on the excellent speech recognition engine Sphinx-4,we designed and implemented a voice instruction recognition system,AIRS (ATC Instruction Recognition System).The experimental results show that the accuracy rate of voice instruction recognition after the acoustic model adapting can reach the demand for ATC simulator training.

Key words: Speech recognition,ATC instruction recognition,Sphinx-4,Air traffic control communication

[1] 由扬,徐肖豪.空管模拟训练机的语音用系统设计[D].南京:南京航空航天大学,2002
[2] 聂党民,张林昌.塔台模拟器中语音识别子系统的开发与应用[D].北京:北京航空航天大学,2003
[3] 李京东,杨新湦,毛笑歌,等.空中交通无线电通话用语[S].MH/T 4014-2003.北京:中国民用航空总,2003
[4] Hunt M,Yates J,Bridle J.Automatic speaker recognition for use over communication channels[C]∥Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP 77).1977,2:764-767
[5] Al-Qatab B A Q,Ainon R N.Arabic speech recognition using Hidden Markov Model Toolkit(HTK)[C]∥International Symposium in Information Technology.2008:557-562
[6] Maheswari N U,Kabilan A P,Venkatesh R.Speaker indepen-dent speech recognition system based on phoneme identification[C]∥Proceedings of International Conference on Computing,Communication and Networking (ICCCN 2008).St.Thomas,VI,2008:1-6
[7] Sharp R D,Bocchieri E,Castillo C,et al.The Watson speech re-cognition engine[C]∥Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Munich,1997:4065-4068
[8] Lee K F,Hon H W,Reddy R.An Overview of the SPHINX Speech Recognition System[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(1):35-45
[9] Zemrowski K M.Impacts of Increasing Reliance on Automation in Air Traffic Control Systems[C]∥Proceedings of the 2nd Annual IEEE Systems Conference.Montreal,Que,2008:1-6,7-10
[10] Tsontzos G,Orglmeister R.CMU Sphinx4speech recognizer in a Service-oriented Computing style[C]∥Proceedings of the 2011IEEE International Conference on Service-Oriented Computing and Applications (SOCA).Irvine CA,2011:1-4
[11] Walker W,Lamere P,Kwok P,et al.Sphinx-4:A flexible open source framework for speech recognition[R].TR-2004-139.Sun Microsystems Laboratories,November 2004
[12] Rabiner L R.A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J].Proceedings of the IEEE,1989,77(2):257-285
[13] Abushariah A A M,Gunawan T S,Khalifa O O,et al.English digits speech recognition system based on Hidden Markov Mo-dels[C]∥Proceedings of International Conference on Computer and Communication Engineering (ICCCE 10).Kuala Lumpur,2010:1-5
[14] Baker J K.The Dragon system-an overview[J].IEEE Transactions on Acoustic,Speech and Signal Processing,1975,23(1):24-29
[15] 由扬,徐肖豪.空管模拟机的IBM ViaVoice技术实现研究[J].中国民航学院学报,2002,20(3):6-9,5
[16] 王晓龙,关毅,等.计算机自然语言处理[M].北京:清华大学出版社,2005
[17] Keyes L,O’Sullivan A,Winstanley A.Graphical object recognition using statistical language models[C]∥Eighth International Conference on Document Analysis and Recognition (ICDAR 05).2005,2:1095-1099
[18] http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
[19] Holland W,May D,Baca J,et al.A Unified Language Model Architecture for Web-based Speech Recognition Grammars[C]∥2006IEEE International Symposium on Signal Processing and Information Technology.2006:294-299
[20] http://javacc.java.net/
[21] Kodaganallur V.Incorporating language processing into Java applications:a JavaCC tutorial[J].Software,IEEE,2004,21(4):70-77
[22] Huang X D,Lee K F,Hon H W,et al.Improved Acoustic Mo-deling for the SPHINX Speech Recognition System[C]∥Proceedings of the International Conference on Acoustics,Speech,and Signal Processing (ICASSP 91).Toronto,Ont,Canada,1991:345-348
[23] Schultz T,Waibel A.Language independent and language adaptive acoustic modeling for speech recognition[J].Speech Communication,2001,35:31-51
[24] http://naturallyspeaking.net/
[25] http://www.microsoft.com/china/community/program/original-articles/techdoc/Cnspeech.mspx
[26] 彭志勇,王丹霞.语音识别技术在DRS雷达模拟机系统中的实现[J].中国民航飞行学院学报,2006,17(2):31-34
[27] 张健,谭景信.语音命令识别技术及其在雷达模拟机中的应用[J].计算机工程与设计,2010,31(3):655-659

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!