摘要: 通过对生物智能机理的借鉴,许多解决复杂问题的新方法不断涌现。最近,Yang基于蝙蝠的回声定位行为,提出了一种新的全局优化算法——蝙蝠算法,同时将一些现有算法的优点引入到该算法中。首先讨论了蝙蝠算法的生物学动机,从原理上描述了蝙蝠回声定位行为和算法实现流程,随后求解了函数极值优化问题。仿真结果表明,蝙蝠算法的性能 优于粒子群算法。最后,对进一步研究作了展望。
[1] Goldberg D.Genetic Algorithms in Search,Optimization andMachine Learning,Reading[M].Mass:Addison-Wesley,1989 [2] Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26(1):29-41 [3] Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.1995:1942-1948 [4] Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]∥Proceedings of the 6th International Symposium on Micro-Machine and Human Seience.1995:39-43 [5] Formato R A.Central force optimization:a new metheuristicWith a applications in applied eletromagnetics[J].Progress in E-lectromagnetics Research,2007,7:425-491 [6] 钱伟懿,张桐桐.自适应中心引力优化算法[J].计算机科学,2012,9(6):207-209 [7] Shor P W.Algorithms for quantum computation:discrete logarithms and factoring[C]∥Proceedings of the 35th Annual Symp.on Foundations of Computer Science.New York,USA:IEEE Computer Society Press,1994,1:124-134 [8] Adleman L.Molecular computation of solutions to combinatorial problems[J].Science,1994,266(5187):1021-1024 [9] Teodorovic D.Dell’Orco M.Bee colony optimization—a coope-rative learning approach to complex transportation problems.Advanced OR and AI Methods in Transportation[C]∥10th EWGT Meeting and 16th Mini-EVRO Conference.2005:51-60 [10] Bersini H,Varela F.The immune recruitment mechanism:A selective evolutionary strategy[C]∥Proceedings of the 4th International Conference on Genetic Algorithms.1991:520-526 [11] Yang X S.A new metaheuristic bat-inspired algorithm[C]∥Nature Inspired Cooperative Strategies for Optimization(NICSO 2010),Studies in Computational Intelligence 284. Berlin Eidelberg: Springer-Verlag,2010:65-74 [12] 张树义,赵辉华,冯江,等.蝙蝠回声定位与捕食对策的研究[J].动物学杂志,1999,34(6):47-50 [13] Altringham J D.Bats:Biology and Behaviour[M].Oxford Univesity Press,1996 [14] 陈敏.7种蝙蝠回声定位行为生态研究[D].长春:东北师范大学,2003 [15] Chattopadhyay R.A study of test functions for optimization algorithms[J].Opt.Theory Appl.,1971,8:231-236 [16] Schoen F.A wide class of test functions for global optimization[J].Global Optimization,1993,3:133-137 [17] Shang Y W,Qiu Y H.A note on the extended rosenrbock function[J].Evolutionary Computation,2006,4:119-126 [18] Shilane D,Martikainen J,Dudoit S,et al.A general framework for statistical performance comparison of evolutionary computation algorithms[J].Information Sciences:an Int.Journal,2008,178:2870-2879 [19] Deep K,Bansal J C.Mean particle swarm optimisation for function optimisation[J].Int.J.Comput.Intel.Studies,2009,1:72-92 [20] Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors in particle swarm optimization[C]∥Proceedings of the Congress on Evolutionary Computing.La Jolla,2000:84-89 |
No related articles found! |
|