计算机科学 ›› 2014, Vol. 41 ›› Issue (10): 261-265.doi: 10.11896/j.issn.1002-137X.2014.10.055

• 人工智能 • 上一篇    下一篇

基于网格的量子博弈聚类算法

黄德才,汤胜龙   

  1. 浙江工业大学计算机科学与技术学院 杭州310023;浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2018-11-14 发布日期:2018-11-14

Clustering Algorithm Based on Quantum Game and Grid

HUANG De-cai and TANG Sheng-long   

  • Online:2018-11-14 Published:2018-11-14

摘要: 量子博弈是对经典博弈的量子模拟,利用量子的纠缠态,可以使博弈参与人在博弈策略的选择过程中相互影响,从而得到与经典博弈不同的结果。将量子博弈运用于聚类问题,并提出一种基于网格的量子博弈聚类算法。算法将数据点看作是博弈的参与人,通过在收益矩阵中内嵌距离函数,使相似的数据点能够获得更大的收益,从而形成聚类。此外,通过设定网格合并规则,使博弈过程得到了简化。仿真实验表明,算法在聚类质量上优于传统的K-means等算法。最后,就算法中的几个参数对算法性能的影响进行了讨论,并给出了参数选择的建议。

关键词: 博弈论,量子博弈,网格,聚类

Abstract: Quantum game is an analogy of classical game.Using the quantum entanglement,game players interact with each other implicitly,and the game will result in a different way.Quantum game was applied to clustering.A clustering algorithm based on quantum game and grid was proposed where data points are regarded as players.By embeding distance function into payoff matrix,similar data points can get more payoff,and clusters will be formed in that way.In addition,a rule about merging grid was designed to simplify the game.Simulations show the clustering quality of this algorithm is superior to K-means etc.At last,several parameters in this algorithm were discussed and some recommendations about parameters selection were provided.

Key words: Game theory,Quantum game,Grid,Clustering

[1] 孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61
[2] 焦宝聪,陈兰平,方海光.博弈论-思想方法及应用[M].北京:中国人民大学出版社,2013:118-121
[3] Meyer D A.Quantum strategies[J].Physical Review Letters,1998,2(5):1052-1055
[4] 李强.动点聚类算法及其量子化研究[D].杭州:浙江大学电气工程学院,2009
[5] 王龙,王靖,武斌.量子博弈:新方法与新策略[J].智能系统学报,2008,3(4):294-304
[6] Eisert J,Wilkens M,Lewenstein M.Quantum games and quantum strategies[J].Physical Review Letters A,1999,3(15):3077-3080
[7] 李威,赵红敏,林家逖.量子博弈论及其应用[J].大学物理,2003,22(12):3-8
[8] 钱国红.量子算法及其在数据挖掘中的应用[D].杭州:浙江工业大学,2012
[9] Guo Hong,Zhang Ju-heng,Koehler G J.A survey of quantum games[J].Decision Support Systems,2008,46(1):318-332
[10] Hauert C,Doebeli M.Spatial structure often inhibits the evolution of cooperation in snowdrift game[J].Nature,2004,8:643-646
[11] 钱国红,黄德才,陆亿红.广义加权Minkovski距离及量子遗传聚类算法[J].计算机科学,2013,0(5):224-228
[12] 赵恒,杨万海.模糊K-Modes聚类精确度分析[J].计算机工程,2003,29(12):27-28
[13] 周杰,李筠,马雷.任意多人的量子博弈[J].量子电子学报,2006,23(2):173-177

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!