计算机科学 ›› 2014, Vol. 41 ›› Issue (10): 84-86.doi: 10.11896/j.issn.1002-137X.2014.10.019

• 2013’和谐人机环境联合学术会议 • 上一篇    下一篇

一种基于海陆边界跟踪的快速海陆分割方法

李超鹏,杨光   

  1. 北京航空航天大学计算机学院数字媒体北京市重点实验室 北京100191;北京航空航天大学计算机学院数字媒体北京市重点实验室 北京100191
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家重点基础研究发展计划项目(2010CB327900),国家杰出青年科学基金项目(61125206)资助

Fast Sea-Land Segmentation Method Based on Maritime Boundary Tracking

LI Chao-peng and YANG Guang   

  • Online:2018-11-14 Published:2018-11-14

摘要: 海陆分割是进行船舶检测、海岸线提取的基本前提之一。当前海陆分割方法需要对图像进行逐像素处理,因此计算量大。提出一种只需 处理 海陆边界区域图像的分割方法,用以快速准确地获取海陆边界。首先提取图像4个边缘的基于边缘信息的EBT纹理特征,获取海陆边界种子块。然后从该种子块出发,利用EBT纹理特征进行边界块跟踪,实现快速海陆分割。实验结果表明,所提方法具有较好的分割效果,与目前主流的分割方法比较,时间花费大幅减少。

关键词: 海陆分割,EBT纹理特征,边界跟踪

Abstract: Sea-land segmentation is a key issue for marine target detection and coastline extraction.Based on the traditional sea-land segmentation method which processes the image by pixels,this paper presented a method which processes the maritime boundary region efficiently by blocks.This method first investigates four edges of the image and extracts texture features based on edge information named Edge Based Texture (EBT) feature.Then maritime boundary seed block can be captured by EBT feature.From this seed block,maritime boundary is traversed and detected efficiently by EBT feature.Experimental results show that the proposed method is of high accuracy.Compared with the state-of-the-art methods,the computational burden is greatly reduced.

Key words: Sea-land segmentation,EBT,Boundary tracking

[1] 高晓亮,王志良,刘冀伟,等.基于灰度统计特征的可变区域图像分割算法[J].光学学报,2011,31(1):1-5
[2] 王茜蒨,彭中,刘莉.一种基于自适应阈值的图像分割算法[J].北京理工大学学报,2003,23(4):521-524
[3] Zhang Xian-feng,Wang Zhi-yong.Coastline extraction from remote sensing image based on improved minimum filter [C]∥2nd IITA International Conference on Geoscience and Remote Sensing.2010,2:44-47
[4] Gonzalez R C,Woods R E.数字图像处理[M].阮秋奇,阮宇智,译.北京:电子工业出版社,2003
[5] Roger T,Stamon G,Jean L.Using Color,Texture,and Hierarchial Segmentation for High-Resolution Remote Sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(2):156-168
[6] 陈琪,熊博莅,陆军,等.改进的二维Otsu图像分割方法及其快速实现[J].电子与信息学报,2010,32(5):1100-1104
[7] Gong Jian,Li Li-yuan,Chen Wei-nan.Fast recursive algorithm for two-dimensional thresholding[J].Pattern Recognition,1998,1(3):295-300
[8] 艾国红.基于多特征动态融合的图像分割研究[D].合肥:中国科技大学,2011
[9] Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C]∥Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory.1992:144-152
[10] Shi Jian-bo,Malik J.Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!