计算机科学 ›› 2014, Vol. 41 ›› Issue (2): 317-319.

• CCML 2013 • 上一篇    

基于小波变换的国画特征提取及分类

盛家川   

  1. 天津财经大学理工学院 天津300200
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61003201),天津财经大学启动项目(Q1104),天津市高校科技发展基金项目(20080816,20090809),天津市科技型中小企业创新计划项目(09ZXCXGX06200)资助

Automatic Categorization of Traditional Chinese Paintings Based on Wavelet Transform

SHENG Jia-chuan   

  • Online:2018-11-14 Published:2018-11-14

摘要: 像素域内利用图像处理技术对图像进行特征提取得到广泛研究。为了在新的信号域内找到更好的图像特征表示方法,提出在小波域内利用不同分辨率及频带的图像结构所展现的艺术风格的不同表现形式来获得国画艺术深度信息的方法。该方法利用三层小波变换提取图像的纹理特征,并采用3种不同的分类器决策树、BP神经网络和支持向量机,对不同画家的风格进行学习,以完成自动分类。实验结果表明,该算法能有效提取图像纹理特征,实现国画的自动分类。

关键词: 小波变换,国画,支持向量机 中图法分类号TP751.1文献标识码A

Abstract: Image processing based feature extraction is widely studied in pixel domain.In order to find a better method of image feature representation in the new signal domain,a number of new artistic features were proposed to exploit the advantage of decomposition from the input art works and characterize the artistic styles across different sub-bands in wavelet domain.In order to achieve automatic categorization,3-layer wavelet transform was employed for the extraction of images’ texture features.Moreover,three different classifiers were compared and used to learn different artistic style.Experimental results show that the algorithm can effectively extract image texture features and achieve high accuracy of classification.

Key words: Wavelet transform,Traditional Chinese paintings,Support vector machine (SVM)

[1] Johnson C R,Hendriks E,Berezhnoy I J,et al.Image processing for artist identification[J].Signal Processing Magazine,2008,25(4):37-48
[2] Talbi M,Aicha A B,Salhi L,et al.Bionic wavelet based denoi-sing using source separation[J].International Journal of Computer Communications & Control.,2012,7(3):574-585
[3] Nath S,Sinha P,Goswami S K.A wavelet based novel method for the detection of harmonic sources in power systems[J].International Journal of Electrical Power & Energy System,2012,0(1):54-61
[4] Tian J,Chen L.Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure[J].Signal Processing,2012,2(9):2137-2146
[5] Nadernejad E,Sharifzadeh S,Korhonen J.Improving performan-ce of wavelet-based image de-noising algorithm using complex diffusion process[J].Imaging Science Journal,2012,0(4):208-218
[6] 夏嵬,鲁宏伟,谢长生,等.基于改进的不变质心和小波域的鲁棒数字图像水印方法[J].计算机科学,2011,38(4):278-281
[7] Shah V P,Younan N H,Durbha S S,et al.Feature identification via a combined ICA-wavelet method for image information mi-ning[J].Geoscience and Remote Sensing Letters,2010,7(1):18-22
[8] Ye M,Routsos D.Wavelet-based color texture retrieval usingthe independent component color space[C]∥200815th IEEE International Conference on Image Processing.2008:165-168
[9] Xu Q,Yang J,Din S-Y.Color texture analysis using the wavelet-based hidden Markov model[J].Pattern Recognition Letters,2006,26(11):1710-1719
[10] Moghaddam H A,Khajoie T T,Rouhi A H,et al.Wavelet correlogram:A new approach for image indexing and retrieval[J].Pattern Recognition,2005,38(12):2506-2518
[11] Gonzalez R C,Woods R E.数字图像处理(第3版)[M].阮秋琦,阮宇智,等译.北京:电子工业出版社,2011(5):289-333
[12] Konstantinidis K,Vonikakis V,P anitsidis G,et al.A center-surround histogram for content-based image retrieval[J].Pattern Analysis and Application,2011,14(3):251-260

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!