计算机科学 ›› 2014, Vol. 41 ›› Issue (3): 258-262.

• 人工智能 • 上一篇    下一篇

数据集的粒化树及其建模应用

闫林,宋金朋   

  1. 河南师范大学计算机与信息工程学院 新乡453007;河南师范大学计算机与信息工程学院 新乡453007
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受河南省自然科学基金(082300410340)资助

Granular Trees Based on Different Data Sets and their Modeling Applications

YAN Lin and SONG Jin-peng   

  • Online:2018-11-14 Published:2018-11-14

摘要: 通过对数据集的不同划分,得到了基于数据集的粒化树。结合关联元素的信息,建立了基于不同数据集粒化树之间的关联关系,确定了两种粒化树中的两条关联链,促成了它们经关联元素的相互联系。由于每一关联链中的粒从粗到细逐步变化,使得关联元素与粒度的逐步细化密切相关,这是粒计算数据处理模式的体现。相关的结论为人才供求问题的算法描述提供了数学模型,并通过实例予以展示。

关键词: 分层算法,粒化树,关联元素,关联关系,关联链 中图法分类号TP18文献标识码A

Abstract: By classifying a data set into different partitions,a granular tree based on the data set was obtained.By using the information of associated elements,a relation called an associated relation was introduced,and connections between two granular trees based on different data sets were established,so that two associated chains were identified,which are connected with each other by an associated element.Because the granules in each associated chain gradually change from a coarse state to a fine state,the associated element model closely links with the changes of the granules,which is consistent with the data processing mode of granular computing.Consequently,as the basis of an algorithm,a mathematical model was created.It can be used to describe the relationship between talent supply and demand.Also,an example shows the process of using the model to carry out data processing.

Key words: Hierarchical algorithm,Granular tree,Associated element,Associated relation,Associated chain

[1] Lin Tong-yan.Granular computing on binary relations II:rough set representations and belief functions[C]∥Rough Sets and Knowledge Discovery.1998:122-140
[2] Lin Tong-yan.Granular computing II:infrastructures for AI-En-gineering[C]∥Proceedings of 2006IEEE International Confe-rence on Granular Computing.Atlanta,USA,2006:2-7
[3] Yao Yi-yu.A partition model of granular computing[J].LNCS Transactions on Rough Sets,2004(1):232-253
[4] 苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008
[5] Zadeh L A.Fuzzy sets and information granulation[M]∥Ad-vances in Fuzzy Set Theory and Applications.Amsterdam:North-Holland Publishing,1979
[6] Zhang Ling,Zhang Bo.Theory of fuzzy quotient space(methods of fuzzy granular computing)[J].Journal of Software,2003,14(4):770-776
[7] Qiu Guo-fang,Chen Jin.Concept knowledge system and concept information granular lattice[J].Chinese Journal of Engineering Mathematics,2005,22(6):963-969
[8] Lin Tong-yan.Neighborhood systems and relational database[C]∥Proceedings of CSC,88.New-York,1988
[9] 胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649
[10] 张燕平,张铃,夏莹.商空间理论与粗糙集的比较[J].微机发展,2004,14(10):21-24
[11] 闫林.数理逻辑基础与粒计算[M].北京:科学出版社,2007:155-160

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!