计算机科学 ›› 2014, Vol. 41 ›› Issue (3): 314-319.

• 图形图像与模式识别 • 上一篇    

小波树结构在贝叶斯压缩感知图像重构中的应用研究

袁琴,吴宣够,熊焰   

  1. 黄山学院机电与信息工程学院 黄山245041;中国科学技术大学计算机科学与技术学院 合肥230026;中国科学技术大学计算机科学与技术学院 合肥230026
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金:未来无线网络体系结构与关键技术(61170233),校级科研项目(2010xkj005),教育厅科研项目(KJ2011B164)资助

Research on Application of Wavelet Tree Structure in Bayesian Compressive Sensing Image Reconstruction

YUAN Qin,WU Xuan-gou and XIONG Yan   

  • Online:2018-11-14 Published:2018-11-14

摘要: 结合贝叶斯和压缩感知理论,提出了一种基于小波变换的图像压缩和重建方法。这种算法充分利用了小波变换系数的结构特征和相关性,有效地提高了图像的压缩比例和重建精度。对小波变换的尺度系数采用基于预测的恢复算法;对高频系数的恢复结合了贝叶斯理论和压缩感知理论,采用了一种基于回归模型的方法,通过高斯混合参数对未知权值参数赋予确定的先验分布,以限制系数的稀疏性。该方法能够得到未知参数的一组具有较高概率的模型,从而实现系数在MMSE意义下的重建。与现有的图像压缩方法以及其它基于压缩感知的图像压缩方法相比,该算法能够获得较高的图像重建质量和较大的图像压缩比。

关键词: 压缩感知,小波变换,图像压缩,贝叶斯 中图法分类号TN95文献标识码A

Abstract: Combining Bayesian learning and compressive sensing,an image compression and reconstruction method based on wavelet transform was proposed in this article.Utilizing the specific structure and correlation of wavelet transforming coefficients,this method improves the image compression rate and reconstruction accuracy effectively.At same time,a regression model based on prediction is adopted in coefficient reconstruction.Gaussian mixture parameters are used to predefine the prior conditional density of the unknown parameters in order to enforce the sparsity.This method can get a group of model with high probability of the coefficients,and result in reconstruction of the image in sense of MMSE.Compared with other image compression methods and CS based image reconstruction methods,the proposed method can get reconstruction images with high quality and get bigger compression rate.

Key words: Compressive sensing,Wavelet,Image compression,Bayesian

[1] 刘荣科,张晓林,廖晓涛.一种基于分类DCT的图像压缩算法[J].遥测遥控,2011,22(4):173-178
[2] Candès E J,Tao T.Near-optimal signal recovery from random projections:Universal encoding strategies?[C]∥IEEE Trans Inf Theory.2006:5406-5425
[3] Han B,Wu F,Wu D P.Image representation by compressivesensing for visual sensor networks[J].J Vis Commun.Image R.,2010,21:325-333
[4] Wu X L,Zhang X J.Model-guided adaptive recovery of com-pressive sensing[C]∥Proc IEEE Data Compression Conf.(DCC’09).Mar.2009:123-132
[5] Goyal V K,Fletcher A K,Rangan S.Compressive sensing and lossy compression[J].IEEE Signal Process.Mag.,2008,25:48-52
[6] Venkatraman D,Makur A.A compressive sensing approach to object-based surveillance video coding[C]∥Proc IEEE Int.Conf Acoustics Speech & Signal Process (ICASSP’09).2009:3513-3516
[7] Baraniuk R G,Cevher V,uarte M F D,et al.Model-based compressive sensing[J].IEEE Trans Inf Theory.,2010,56:1982-2001
[8] Dunn P F.Measurement and Data Analysis for Engineering and Sci-ence [C]∥New York:McGraw-Hill.2005:275-281
[9] Candès E J,Tao T.Refl ections on compressed sensing[J].IEEE Inform.Theory Soc.Newslett.,2008,58:20-23
[10] Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM J.Sci.Comput.,1999,20:33-61
[11] Donoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit[R].Tech.Rep.2006-02.Dept.of Statistics,Stanford University,Stanford,CA,2006:1-13
[12] Efron B,Hastie T,Johnstone I,et al.Least angle regression[J].Ann.Stat.,2004,32:407-499

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!