计算机科学 ›› 2014, Vol. 41 ›› Issue (3): 314-319.
• 图形图像与模式识别 • 上一篇
袁琴,吴宣够,熊焰
YUAN Qin,WU Xuan-gou and XIONG Yan
摘要: 结合贝叶斯和压缩感知理论,提出了一种基于小波变换的图像压缩和重建方法。这种算法充分利用了小波变换系数的结构特征和相关性,有效地提高了图像的压缩比例和重建精度。对小波变换的尺度系数采用基于预测的恢复算法;对高频系数的恢复结合了贝叶斯理论和压缩感知理论,采用了一种基于回归模型的方法,通过高斯混合参数对未知权值参数赋予确定的先验分布,以限制系数的稀疏性。该方法能够得到未知参数的一组具有较高概率的模型,从而实现系数在MMSE意义下的重建。与现有的图像压缩方法以及其它基于压缩感知的图像压缩方法相比,该算法能够获得较高的图像重建质量和较大的图像压缩比。
[1] 刘荣科,张晓林,廖晓涛.一种基于分类DCT的图像压缩算法[J].遥测遥控,2011,22(4):173-178 [2] Candès E J,Tao T.Near-optimal signal recovery from random projections:Universal encoding strategies?[C]∥IEEE Trans Inf Theory.2006:5406-5425 [3] Han B,Wu F,Wu D P.Image representation by compressivesensing for visual sensor networks[J].J Vis Commun.Image R.,2010,21:325-333 [4] Wu X L,Zhang X J.Model-guided adaptive recovery of com-pressive sensing[C]∥Proc IEEE Data Compression Conf.(DCC’09).Mar.2009:123-132 [5] Goyal V K,Fletcher A K,Rangan S.Compressive sensing and lossy compression[J].IEEE Signal Process.Mag.,2008,25:48-52 [6] Venkatraman D,Makur A.A compressive sensing approach to object-based surveillance video coding[C]∥Proc IEEE Int.Conf Acoustics Speech & Signal Process (ICASSP’09).2009:3513-3516 [7] Baraniuk R G,Cevher V,uarte M F D,et al.Model-based compressive sensing[J].IEEE Trans Inf Theory.,2010,56:1982-2001 [8] Dunn P F.Measurement and Data Analysis for Engineering and Sci-ence [C]∥New York:McGraw-Hill.2005:275-281 [9] Candès E J,Tao T.Refl ections on compressed sensing[J].IEEE Inform.Theory Soc.Newslett.,2008,58:20-23 [10] Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM J.Sci.Comput.,1999,20:33-61 [11] Donoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit[R].Tech.Rep.2006-02.Dept.of Statistics,Stanford University,Stanford,CA,2006:1-13 [12] Efron B,Hastie T,Johnstone I,et al.Least angle regression[J].Ann.Stat.,2004,32:407-499 |
No related articles found! |
|