计算机科学 ›› 2014, Vol. 41 ›› Issue (Z11): 447-450.
方颖,徐炳吉
FANG Ying and XU Bing-ji
摘要: 在原有忆阻器的定义上采用一种相对简单的荷控忆阻器模型,其忆阻M与电荷q的关系可以用一条二次曲线来描述。经仿真分析,其伏安特性曲线是一条类斜“8”字滞后回线,且会随着周期双极性输入信号的频率和振幅的变化而变化,并在一定程度上受到忆阻器本身参数的影响。用此荷控忆阻器代替蔡氏电路中的蔡氏二极管,得到含荷控忆阻器的电路,给出相轨图、Lyapunov指数与维数来验证其在一定参数配置下处于混沌状态。通过变换系统的初始值,验证了此混沌系统的运动轨迹在初始值微小的变化下会发生很大的差异。Lyapunov指数谱表明含荷控忆阻器的混沌系统在初始值变化时能够进入超混沌状态。利用劳斯判据判别了排除零特征根的影响下该混沌系统在平衡点处的稳定性。
[1] Chua L.Memristor-The missing circuit element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-509 [2] Strukov D B,Snider G S,Stewart D R,et al.The missing memristor found[J].NATURE,2008,459(7250):1154 [3] Itoh M,Chua UA L O.Memristor Oscillators [J].International Journal of Bifurcation and Chaos,2008,18(11):3183-3206 [4] Kyprianidis I M,Volos C K。Stouboulos I N.Chaotic Dynamics from a Nonlinear Circuit based on Memristor with Cubic Nonlinearity[J].AIP Conference Proceedings,2010,1203(1):626-631 [5] Muthuswamy B,Chua L O.Simplest Chaotic Circuit[J].International Journal of Bifurcation and Chaos,2010,20(5):1567-1580 [6] Chua L O,Sung M K.Memristive devices and systems[J].Proceedings of the IEEE,1976,64(2):209-223 [7] Xu Bi-rong.A simplest parallel chaotic system of memristor[J].Acta Phys.Sin,2013,62(19):99-106 [8] Adhikari S P,Kim H.Why Are Memristor and Memistor Differ-ent Devices?[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(11):2611-2618 [9] Biolkova V,Kolka Z,Biolek Z,et al.Memristor modeling based on its constitutive relation:Advances in Communications,Computers,Systems,Circuits and Devices,2010[C]∥Puerto De La Cruz,SPAIN.2010 |
No related articles found! |
|