计算机科学 ›› 2014, Vol. 41 ›› Issue (Z11): 72-74.

• 智能计算 • 上一篇    下一篇

基于贝叶斯理论的万智牌卡牌推荐算法

杨耀飞,李业丽   

  1. 北京印刷学院信息工程学院 北京102600;北京印刷学院信息工程学院 北京102600
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受北京市教育委员会市属高校创新能力提升计划项目(TJSHG201310015016),北京市优秀人才培养项目(2013D002048000003)资助

Magic Cards Recommendation Algorithm Based on Bayesian Theory

YANG Yao-fei and LI Ye-li   

  • Online:2018-11-14 Published:2018-11-14

摘要: 万智牌是一个历史悠久的桌面游戏,因其逻辑复杂且卡牌众多,可以组成大量套牌[1]。使用卡牌的逻辑进行穷举来推荐卡牌不仅难以实现,而且算法时间复杂度是一个NP问题。基于贝叶斯理论的万智牌推荐算法主要利用用户的套牌作为原始数据进行计算得到推荐矩阵,用以替换基于逻辑的推荐算法的逻辑部分,避开了基于逻辑的推荐算法的NP问题,而且推荐的准确率也随着用户套牌的增加而增加。

关键词: 万智牌,推荐算法,协方差矩阵,相关系数矩阵,机器学习

Abstract: Magic is a long history table games, and can be composed of countless decks because of its complexity in logic and numerous cards.To recommend cards based on logic is difficult to achieve,and the time complexity of the algorithm based on logic is non-deterministic polynomial.Magic recommendation algorithm based on bayesian theory mainly uses the user’s decks as the raw data to calculate a recommendation matrix to replace the logic portion of the logic-based re-commendation algorithm.It avoids the logic-based recommendation algorithm NP problem,and the recommended rate is increasing with the user accuracy decks increasing.

Key words: Magic card,Recommendation algorithm,Correlationmatrix,Correlation matrix,Machine learning

[1] Wikipedia.org.Magic:The Gathering [EB/OL].2014-04-02[2014-04-03].http://en.wikipedia.org/wiki/Magic:_The_Gathering
[2] Wikipedia.org.Recommender System [EB/OL].2013-05-05[2014-04-01].http://en.wikipedia.org/wiki/Recommender_system
[3] Stanly B.Lippman Josee Lajoie,Barbara E Moo.C++ Primer 4th Edition.[M]:Addison-Wesley Professional,2005:623
[4] D’Agostini G.Bayesian reasoning in data analysis [M].World Scientific,2003
[5] Wu J,Chen L,Jian H,et al.Composite service recommendation based on Bayes theorem[J].International Journal of Web Ser-vices Research (IJWSR),2012,9(2):69-93
[6] Lau C W.News Recommendation System Using Logistic Regression and Naive Bayes Classifiers[J].2011
[7] Salehi M,Nakhai Kamalabadi I.A hybrid recommendation approach based on attributes of products using genetic algorithm and naive Bayes classifier[J].International Journal of Business Information Systems,2013,13(4):381-399
[8] Lisboa P,Nawaf H,Bhaya W.Improving Recommendation Systems by Modeling the Stability of Implicit Behaviour[C]∥The Post Graduate Network Symposium (PGNet2013).Liverpool,UK.2013
[9] de Groot H T.iNewsReader:Personal Netnews recommendationusing Nave Bayes & Support Vector Machines[D].Netherlands:University of Gronirgen,2011
[10] Puntheeranurak S,Pitakpaisarnsin P.Time-aware Recommender System Using Nave Bayes Classifier Weighting Technique[C]∥2nd International Symposium on Computer,Communication,Control and Automation.Atlantis Press,2013:266-269

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!