计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 27-31.

• 智能计算 • 上一篇    下一篇

基于优化支持向量机的供应链竞争力评价方法

钟夫,郭建胜,张斯嘉,王族统   

  1. 空军工程大学装备管理与安全工程学院 西安710051,空军工程大学装备管理与安全工程学院 西安710051,空军工程大学装备管理与安全工程学院 西安710051,空军工程大学装备管理与安全工程学院 西安710051
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受陕西省自然科学基金项目:两阶段不确定规划问题中的信息价值研究(2013JM1003)资助

Supply Chain Competitiveness Evaluation Method Based on Optimized Support Vector Machine

ZHONG Fu, GUO Jian-sheng, ZHANG Si-jia and WANG Zu-tong   

  • Online:2018-11-14 Published:2018-11-14

摘要: 供应链竞争力变量因素多、信息量少、数据收集困难,造成其难以被准确评价。针对该问题构建了一个新的供应链评价指标体系,提出了一种新的供应链竞争力评价方法。它利用蜂群算法全局优化能力强的优点,对支持向量机的控制参数进行有效优化,以此为基础,构建了ABC-SVM评价模型。实验结果表明,所提方法能够有效提高供应链竞争力的评价精度,对提高企业决策效率具有积极意义。

关键词: 供应链竞争力,支持向量机,人工蜂群算法,参数优化,评价模型

Abstract: Aiming at that the supply chain is difficult to accurately evaluate,it comes from more variable facters,less amout of information and the difficult data collection.This paper built a new evaluation index system of supply chain and proposed a new supply chain competitiveness evaluation method.It uses the advantages of global optimization ability of artificial bee colony algorithm to optimize the control parameters of support vector machine effectively,and on this basis,the ABC-SVM evaluation model is constructed.The experimental results show that the new proposed method can effectively improve the evaluation presision of the supply chain competitiveness,and has a positive meaning to improve business decision-making effctiveness.

Key words: Supply chain competitiveness,Support vector machine,Artificial bee colony algorithm,Parameter optimization,Evaluation model

[1] Bhatnagara R,Sohal A S.Supply Chain Competitiveness:Measuring the Impact of Location Factors,Uncertainty and Manufacturing Practice[J].Technovation,2005,25(5):443-456
[2] 邵晓峰,季建华,黄培清.供应链竞争力评价指标体系的研究[J].预测,2000(6):52-56
[3] 陈虎.物流服务供应链绩效动态评价研究[J].计算机应用研究,2012,29(4):1241-1244
[4] 张文军.供应链绩效评价方法探讨[J].物流工程与管理,2014,6(9):142-144
[5] 马淑琴,邵宇佳.基于FAHP的内外贸一体化企业供应链竞争力研究[J].经济问题,2013(10):81-85
[6] 段茜,黄梦醒,万兵,等.云计算环境下基于马儿可夫链动态模糊评价的供应链伙伴选择研究[J].计算机应用研究,2014,31(8):2403-2406
[7] 曹庆奎,叶伟.基于DEA的低碳地产供应链整体绩效评价研究[J].数学的实践与认识,2013,43(10):16-22
[8] 何开伦,李伟,程创业.SOM神经网络在生猪绿色供应链绩效评价中的应用[J].重庆理工大学学报(自然科学版),2014,8(9):92-97
[9] 汪劲松,石薇.种群遗传神经网络在股指预测中的应用[J].统计与决策,2014(14):76-79
[10] Liu Sheng,Li Yan-yan.A novel predictive control and its application on water level system of ship boiler[C]∥International Conference on Innovative Computing,Information and Control.2006:8
[11] 李强,刘光远,赖详伟.改进的支持向量机在情感识别中的应用[J].计算机应用,2014,34(S1):117-119
[12] 李翠平,郑瑶瑕,张佳,等.基于遗传算法优化的支持向量机品位插值模型[J].北京科技大学学报,2013,35(7):837-843
[13] 孙煦,陆化普,吴娟.基于蚁群算法支持向量机模型的公路客运量预测[J].合肥工业大学学报(自然科学版),2012,35(1):124-129
[14] 赵曦,李颖,徐江,等.基于PSO-SVM 的发动机及故障诊断研究[J].计算机仿真,2014,31(3):171-174
[15] Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization:TECHNICAL REPORTTR06[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005
[16] 张淑宁,王福利,尤富强,等.基于鲁棒学习的最小二乘支持向量机及其应用[J].控制与决策,2010,25(8):1169-1172
[17] Luttrell S P.The use of Bayesian and entropic methods in neural network theory,Maximum Entropy and Bayesian Methods[M].Kluwer,Boston,1989:363-370
[18] 李秋玲,贾敏智.基于改进ABC算法优化SVM的汽车发动机故障诊断[J].制造业自动化,2014,36(3):57-60
[19] Chang C C,Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology(TIST),2011,2(3):27
[20] 高立法,冯腾达.企业经营分析与绩效评价[M].北京:经济管理出版社,2001
[21] 史文利,高天宝.供应链绩效评价的未确知测度模型[J].系统工程与电子技术,2010,32(5):983-987

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!