计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 107-110.doi: 10.11896/j.issn.1002-137X.2016.09.020

• 2015 年第三届CCF 大数据学术会议 • 上一篇    下一篇

URTP:一种基于用户-区域-时间-商品的因子分解推荐模型

胡亚慧,杨莎,刘晶,余伟,李石君,王俊,方其庆   

  1. 武汉大学计算机学院 武汉430079;空军预警学院 武汉430019,汉口学院计算机科学与技术学院 武汉430212,中南民族大学计算机科学学院 武汉430074,武汉大学计算机学院 武汉430079,武汉大学计算机学院 武汉430079,武汉大学计算机学院 武汉430079,空军预警学院 武汉430019
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61272109),青年自然科学基金(61502350),中央高校基本科研业务费专项资金项目(2042014kf0057),湖北省自然科学基金项目(2014CFB289),空军预警学院青年创新基金(2013ZDJC0101)资助

URTP:A Factorization Model for Recommendation Based on Users,Regions,Time and Products

HU Ya-hui, YANG Sha, LIU Jing, YU Wei, LI Shi-jun, WANG Jun and FANG Qi-qing   

  • Online:2018-12-01 Published:2018-12-01

摘要: 如何从海量的数据中将不同的商品在恰当的时间、合理的位置推荐给适当的人(或人群)是当前面临的主要挑战。考虑到不同国家不同区域的人(或人群)在宗教信仰、职业、教育程度等方面有着不同的文化背景差异,以及大数据环境下商品推荐常常面临数据稀疏和冷启动等问题,从签到数据中抽取出目标用户所在的地理位置,根据该位置的文化背景特点筛选出与目标用户有相似或相同的文化背景的人群;再根据每个商品适宜购买的最佳合理时间和间隔购买时间选出恰当的商品,运用因子分解机的思想建立用户-区域-时间-商品因子分解模型。大量真实数据集上的实验表明该模型能够在数据量大、高稀疏的数据环境下进行商品推荐,验证了该方法的可行性、有效性和高效性。

关键词: 商品推荐,文化,大数据

Abstract: How to recommend a right person with the right products at the right time and place is a challenging topic.First,different users have different culture backgrounds including religion,career,education,preference,etc.Then,different products should be purchased again in different reasonable interval time.And the multi-source heterogeneous,fragmented,various and inconsistent e-commerce data cause problems of sparse data and even cold start.To address these problems,we extracted users’ cultural background with their longitude,latitude and city functional regions.Then,we analyzed the reasonable purchase time and reasonable interval time for different products.And we built a URTP model,which is a factorization model based on users,regions,time and products for recommendation.Experimental results verify the feasibility,effectiveness and efficiency of our algorithm.

Key words: Commodity recommendation,Culture,Big data

[1] Yin Hong-zhi.Key technologies for spatio-temporal recommendation on social media [D].Beijing:School of Information Science and Technology,Beijing University,2014(in Chinese) 阴红志.社会化媒体中若干时空相关的推荐问题研究[D].北京:北京大学信息科学技术学院,2014
[2] Melville P,Sindhwani V.Recommender systems[M]∥Encyclopedia of Machine Learning.2011:829-838
[3] Ricci F,Rokach L,Shapira B,et al.Recommender systems handbook[M].New York:Springer-Verlag,2010
[4] Liu Bin,Fu Yan-jie,Yao Zi-jun,et al.Learning geographicalpreferences for point-of-interest recommendation[C]∥Procee-dings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2013,3-1051
[5] Zheng Yu,Zhang Li-zhu,Ma Zheng-xin,et al.Recommendingfriends and locations based on individual location history[J].ACM Transactions on the Web,2010,5(1):99-111
[6] Cheng Chen,Yang Hai-qin,Michael R,et al.Where you like to go next:Successive point-of-interest recommendation[C]∥Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Boston:AAAI,2013:2605-2611
[7] Ying Jia-ching,Lee W,Tseng V S.Mining geographic-temporal-semantic patterns in trajectories for location prediction [J].ACM Transactions on Intelligent Systems and Technology,2013,5(1):328
[8] Hofstede G.Cultures consequences:International differences in work related values[M].California:Sage Publications,1991
[9] Gavilanes G,Quercia R D,Jaimes A.Cultural dimensions intwitter:Time,individualism and power[C]∥Proceedings of the 7th International Conference on Weblogs and Social Media.Boston:AAAI,2013:195-204
[10] Bakhshi S,Kanuparthy P,Gilbert E.Demographics,weather and online reviews:A study of restaurant recommendations[C]∥Proceedings of the 23rd International World Wide Web Confe-rence.New York:ACM,2014:443-454
[11] Hu Ya-hui,Yu Wei,Li Shi-jun,et al.CFM:A fast rating predicting method based on the culture and factorization machine [J].Journal of Nanjing University,2015,1(4):826-833(in Chinese) 胡亚慧,余伟,李石君,等.CFM:一种结合文化和因子分解机的快速评分预测方法[J].南京大学学报,2015,1(4):826-833
[12] Meng Xiao-feng,Li Yong,Zhu Jian-hua.Social computing in the era of big data:Opportunities and challenges[J].Journal of Computer Research and Development,2013,50(12):2483-2491(in Chinese) 孟小峰,李勇,祝建华.社会计算:大数据时代的机遇与挑战[J].计算机研究与发展,2013,0(12):2483-2491
[13] Yu Wei,Li Shi-jun,Yang Sha,et al.Automatically discovering of inconsistency among cross-source data based on Web big data[J].Journal of Computer Research and Development,2015,2(2):295-308(in Chinese) 余伟,李石君,杨莎,等.Web大数据环境下的不一致跨源数据发现[J].计算机研究与发展,2015,52(2):295-308
[14] Hu Ya-hui,Li Shi-jun,Yu wei,et al.Recognizing the same commodity entities in big data[J].Journal of Computer Research and Development,2015,52 (8):1794-1805(in Chinese) 胡亚慧,李石君,余伟,等.大数据环境下的电子商务商品实体同一性识别[J].计算机研究与发展,2015,52(8):1794-1805
[15] Tsai Chihfong,Hung Chihli.C1uster ensembles in collaborative filtering recommendation[J].Applied Soft Computing,2012,2 (4):1417-1425
[16] Srebro N,Rennie J,Jaakola T.Maximum-margin matrix factorization[J].Advances in Neural Information Processing Systems,2005,17:1329-1336
[17] Kolda T G,Bader B W.Tensor decompositions and applications[J].Society for Industrial and Applied Mathematics,2009,1(3):455-500
[18] Rendle S.Factorization Machines with libFM[J].ACM Transactions on Intelligent Systems and Technology,2012,3(3):219-224

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!