计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 447-450.doi: 10.11896/j.issn.1002-137X.2016.11A.100
张松,张琳
ZHANG Song and ZHANG Lin
摘要: 在数据挖掘中由于每个数据对象对于知识发现的作用是不同的,为了区分这些相异之处,给每个对象赋予一定量的值,因此在PAM聚类算法的基础上提出一种W-PAM(Weight Partitioning Around Medoids)聚类算法,它为簇中数据对象加入权重来提高算法的准确率,此外利用数据对象间的关联限制能够提高聚类算法的效果。探讨了一种W-PAM算法与关联限制相结合的限制聚类算法,该算法同时拥有W-PAM算法和关联限制的优点。实验结果证明,W-PAM的限制聚类算法可以更有效地利用所给的关联限制来改善聚类效果,提高算法的准确率。
[1] 孙富贵,刘杰,赵连宁.聚类算法研究[J].软件学报,2008,9(1):48-61 [2] Vapnik V.Statistical Learning Theory [M].New York:John Wiley,1998 [3] MacQueen J.Some methods for classification and analysis ofmultivariate observations [C]∥Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley:University of California Press,1967:281-297 [4] Park H S,Jun C H.A simple and fast algorithm for K-medoids clustering [J].Expert Systems with Applications,2009,36(2):3336-3341 [5] 何萍,徐晓华,陆林,等.双层随机游走半监督聚类[J].软件学报,2014,5(5):997-1013 [6] 马儒宁,王秀丽,丁军娣.多层核心集凝聚算法[J].软件学报,2013,4(3):490-506 [7] Zhou Y,Wang X,Wang T,et al.Fault-tolerant multi-path routing protocol for WSN based on HEED[J].International Journal of Sensor Networks,2016,20(1):37 [8] 陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,6(2):349-359 [9] 刘卓,杨悦,张健沛,等.不确定度模型下数据流自适应网格密度聚类算法[J].计算机研究与发展,2014,1(11):2518-2527 [10] Wagstaff K,Cardie C.Clustering with instance- level constraints[C]∥Proc of the 17th International Conference on Machine Learning (ICML-2000).2000:1103-1110 [11] Sun Jun,Zhao Wen-bo.Xue Jiangwei et al.Clustering with feature order preferences [J].Intelligent Data Analysis,2010,14(4):479-495 [12] M Law,A Topchy,A Jain.Clustering with Soft and Group Constraints [C]∥Proc of Joint IAPR Int’l Workshop on Structural Syntactic and Statistical Pattern Recognition.2004:662-670 [13] Wagstaff K,Cardie C,Rogers S,et al.Constrained K-meansClustering with Background Knowledge[C]∥Proc of the 18th International Conference on Machine Learning (ICML-2001).2001:577-584 [14] Klein D,Kamvar S,Manning C.Form Instance-level Constraints to Space-Level Constraints:Making the Most of Prior Knowledge in Data Clustering[C]∥Proc of the 19 International Conference on Machine Learning (ICML-2002).2002:307-314 [15] 韩家炜,堪博著.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2007:251-267 [16] 刘正,张国印,陈志远.基于特征加权和非负矩阵分解的多视角聚类算法[J].电子学报,2016,4(3):536-540 |
No related articles found! |
|