计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 451-454.doi: 10.11896/j.issn.1002-137X.2016.11A.101

• 信息安全 • 上一篇    下一篇

时间加权的混合推荐算法

邹凌君,陈崚,李娟   

  1. 金陵科技学院信息化建设与管理中心 南京211169,扬州大学信息学院计算机系 扬州225009;南京大学软件新技术国家重点实验室 南京210093,金陵科技学院计算机工程学院 南京211169
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61379066),江苏省高校自然科学基金项目(15KJD520008),江苏省现代教育技术研究课题(2014-R-32521)资助

Time-weighted Hybrid Recommender Algorithm

ZOU Ling-jun, CHEN Ling and LI Juan   

  • Online:2018-12-01 Published:2018-12-01

摘要: 提出了一种基于时间加权的混合推荐方法。该方法分为离线和在线两个阶段,离线阶段根据目标用户对物品的评价等信息得到与目标用户有相似兴趣的邻居,并构建物品描述模型;在线阶段根据目标用户和邻居用户的评价行为构建用户描述模型。由于用户兴趣会随外部因素而产生概念漂移,因此在算法中引入衰减系数以提高推荐质量。在滑动窗口模型下,每隔一定时间间隔,更新用户模型和相似群组,产生个性化的推荐。实验结果表明,该算法能实时反映用户兴趣,提高推荐系统的准确率,有较高的用户满意度。

关键词: 个性化推荐,时间权重,混合推荐,Logistic函数

Abstract: This paper proposed a novel Time-weighted Hybrid Recommender algorithm.The algorithm was divided into an online component and an offline component.The offline component derives the similar group of the target recommendation user according to the information such as evaluation information and constructed object profile model while the online component constructed user profile model according to both target user and the neighbors’ behavior.Because user preferences are drifting over time,the method uses attenuation coefficient in user profile model to improve the recommendation quality.The method uses sliding windows which is divided into several equal segments to produce personalized recommendation in each segment and update user profile model as well as the neighbors in a certain interval.The experimental results show that the algorithm can reflect user preferences over time,and has better effectiveness and achieves a more satisfactory effort.

Key words: Personalized recommendation,Time-weighted,Hybrid recommendation,Logistic function

[1] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009,0(2):350-362
[2] Schafer J B,Frankowski D,Herlocker J,et al.Collaborative filtering recommender system[C]∥The Adaptive Web,Lect Notes Comput Sci.Berlin,Heidelberg:Springer-Verlag,2007,4321:91-324
[3] Park T,Pennock D M.Applying collaborative filtering tech-niques to movie search for better ranking and browsing[C]∥Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559
[4] Ma H,King I,Lyu M R.Effective missing data prediction for collaborative filtering[C]∥Proceedings of the 30th Annual International ACM SIGIR Conference.Amsterdam,The Netherlands,2007:39-46
[5] Deshpande M,Karypiws G.Item-based top-N recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177
[6] 马宏伟,张光卫,李鹏.协同过滤推荐算法综述[J].小型微型计算机系统,2009,0(7):1282-1288
[7] Somlo G,Howe A.Adaptive light weight text filtering[J].Proc Lecture Notes in Computer Science,2001,2189:319-329
[8] Pazzani M J,Billsus D.Content-based recommendation systems[C]∥The Adaptive Web,Lect.Notes Comput Sci.Berlin,Heidelberg:Springer-Verlag,2007,4321:325-341
[9] Balabanovic M,Shoham Y.Fab:content-based collaborative recommendation[J].Communication of the ACM,1997,40(3):66-72
[10] Burke R.Hybrid recommender systems:Survey and experiments [J].User Modeling and User-Adapted Interact,2002,12(4):331-370
[11] Yoshii K,Goto M,Komatani K,et al.An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model [J].IEEE Transactions on Audio Speech and Language Processing,2008,16(2):435-447
[12] Park Y J,Chang K N.Individual and group behavior-based customer profile model for personalized product recommendation[J].Expert Systems with Applications,2009,36(2):1932-1939
[13] Min S H,Han I.Detection of the customer time-variant pattern for improving recommender systems[J].Expert Systems with Applications an International Journal,2005,8(2):189-199
[14] Koren Y.Collaborative filtering with temporal dynamics[C]∥Proc.of the ACM SIGKDD Conf.on Knowledge Discovery and Data Mining.ACM Press,2009:89-97
[15] Ren Y L,Zhu T Q,Li G,et al.Top-N recommendations by learning user preference dynamics[C]∥In:Proc.of the Annual Conf.on Neural Information Processing Systems.Springer-Verlag,2013:390-401
[16] 孙光福,吴乐,刘淇,等.基于时序行为的协同过滤推荐算法[J].软件学报,2013(11):2721-2733
[17] 郑志高,刘京,王平,等.时间加权不确定近邻协同过滤算法[J].计算机科学,2014,1(8):7-12

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!