计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 265-267.doi: 10.11896/j.issn.1002-137X.2016.6A.063
杨华,张杭,张江,杨柳,李炯
YANG Hua, ZHANG Hang, ZHANG Jiang, YANG Liu and LI Jiong
摘要: 针对在线盲源分离算法收敛速度受初始分离矩阵影响的问题,提出一种基于人工蜂群算法(ABC)的初始分离矩阵优化的在线盲源分离算法。该算法利用人工蜂群算法较强的搜索能力,在盲源分离的初始阶段以批处理的方式进行分离矩阵的寻优,使得算法获得较好的初始迭代点,然后采用梯度下降法以在线的方式实现分离,从而提高算法的整体收敛性能。仿真结果证明了所提算法的有效性,并且其适用于混合矩阵时变的情形。
[1] Jutten C,Herault J.Blind Separation of Sources,Part I:AnAdaptive Algorithm based on Neuromimetic [J].Signal Proces-sing,1991,24(1):1-10 [2] Hu Jing,Fan Le-hao.Application of JADE to separate complex-valued sources[C]∥ Computer Science and Service System (CSSS).Nanjing,IEEE,2011:1127-1129 [3] Hyvarinen A,Oja E A.Fast Fixed-Point Algorithm for Inde-pendent Component Analysis [J].Neural Computation,1997,9(7):1483-1492 [4] 李良敏.基于遗传算法的盲源分离算法[J].西安交通大学学报,2005,9(7):740-743 [5] 张朝柱,张健沛,孙晓东.基于自适应粒子群优化的盲源分离[J].系统工程与电子技术,2009,1(6):1275-1278 [6] 张银雪,田学民,邓晓刚.基于改进人工蜂群算法的盲源分离方法[J].电子学报,2012,0(10):2026-2030 [7] Tang Y,Li J P.Normalized natural gradient in independent component analysis [J].Signal Process,2010,90(9):2773-2777 [8] Cardoso J F,Laheld B H.Equivariant adaptive source separation [J].IEEE Trans.on Signal Processing,1996,44(12):3017-3030 [9] Chambers J A,Jafari M G,Melaughlin S,Variable Step-size EASI Algorithm for Sequential Blind Source Separation[J].Electronics Letters,2004,0:393-394 [10] Yuan L,Wang W,Chambers J A.Variable Step-size Sign Natural Gradient Algorithm for Sequential Blind Source Separation[J].IEEE Signal Processing Letters,2005,12(8):589-592 [11] 欧世峰,高颖,赵晓辉.自适应组合型盲源分离算法及其优化方案[J].电子与信息学报,2011,3(5):1243-1247 [12] 郑辉.通信中盲信号处理理论与技术[M].北京:国防工业出版社,2013:437-439 [13] Nordhausen K,Ollila E,Oja H.On the performance indices of ICA and blind source separation[C]∥IEEE Int.Workshop on Signal Processing Advances in Wireless Communications.Piscataway,2011:461-465 |
No related articles found! |
|