计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 516-517.doi: 10.11896/j.issn.1002-137X.2016.6A.122

• 智能系统及应用 • 上一篇    下一篇

基于改进组合神经网络的水资源预测研究

王坚   

  1. 中央财经大学信息学院 北京100081
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受中央财经大学重点学科建设项目,北京高等学校青年英才计划项目(YETP0988)资助

Research on Prediction of Water Resource Based on Improved Combination Neural Network

WANG Jian   

  • Online:2018-11-14 Published:2018-11-14

摘要: 我国作为水资源大国,在日益加速的城镇化进程中正面临人口膨胀、环境污染、水质变差等一系列重大的挑战,而科学合理地对水资源需求进行预测成为保护环境、保持可持续发展的关键任务。首先将神经网络应用于水资源需求预测问题背景并比较其算法,同时引入模糊反馈法来改进熵值法以确定组合模型的加权系数,建立组合神经网络预测模型。该算法不仅可以根据历史数据自动推演今后水资源需求的变化趋势,还引入反馈和演化机制,用户可以调整求解精度以控制算法的收敛速度。实验表明,在数据精度不高以及水文数据不全等不利应用背景中,提出的基于组合模型的神经网络在水资源预测中具有较好的性能。

关键词: 水资源需求预测,神经网络,组合模型,模糊反馈

Abstract: China is a big country of water resource and in the accelerating process of urbanization,it is facing a series of major challenges such as urban population growth and water pollution,etc,so scientific and rational forecasting to water resource demand becomes a key task to protect environment and maintain sustainable development.This paper summarized various neural network algorithms in the context of water resource demand forecasting,and introduced fuzzy feedback method to improve entropy method to determine the weighting factor of combination forecasting model,to establish neural network forecasting model.The algorithm can not only automatically deduce future change trends of water resources based on historical data,but also introduce feedback and evolution mechanism,so that the users can adjust the solution accuracy to control convergence speed of algorithm.The experiment shows that,the neural network based on combination model proposed in this paper has better performance in application background when data accuracy is not high and hydrological data is incomplete.

Key words: Prediction for water resource requirement,Neural network,Combination model,Fuzzy feedback

[1] 中华人民共和国水利部.水文情报预报规范SL2502-2000[S].北京:中国水利水电出版社,2000
[2] 金兴平,程海云,等.长江流域水资源预测技术[J].人民长江,2005,6(12):18-20
[3] 冯利华.神经网络在水资源预测中的运用[J].农业系统科学与综合研究,2003,19(1):35-38
[4] 罗志增,熊静,等.一种基于WPT和LVQ神经网络的手部动作识别方法[J].模式识别与人工智能,2010,3(5):695-700
[5] 杨钟亮,陈育苗.基于GGA-Elman 网络的头部体态语言sEMG识别方法[J].智能系统学报,2014(4):385-391
[6] 王平勋.基于自组织竞争神经网络的抽油井故障诊断系统[J].电子设计工程,2013,1(11):112-115
[7] 王莎莎,陈安,苏静,等.组合预测模型在中国GDP 预测中的应用[J].山东大学学报(理学版),2009(2):56-59
[8] 易丹辉.统计预测方法与应用[M].北京:钟鼓统计出版社,2001
[9] 张星.基于熵权的福建粮食产量组合预测模型[J].中国农业气象,2008,9(2):194-196
[10] 王渺林.嘉陵江径流长期变化分析及预报[J].重庆交通学院学报(自然科学版),2006,25(6):135-138

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!