计算机科学 ›› 2017, Vol. 44 ›› Issue (1): 289-294.doi: 10.11896/j.issn.1002-137X.2017.01.053

• 图形图像与模式识别 • 上一篇    下一篇

基于SIFT和非参贝叶斯的高分辨率遥感影像地物识别算法

王健,白鹤翔,李德玉   

  1. 山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006;山西大学计算智能与中文信息处理教育部重点实验室 太原030006
  • 出版日期:2018-11-13 发布日期:2018-11-13

High Resolution Remote Sensing Image Object Recognition Algorithm Based on SIFT and Non-parametric Bayes

WANG Jian, BAI He-xiang and LI De-yu   

  • Online:2018-11-13 Published:2018-11-13

摘要: 地物识别是遥感图像处理领域中的一个重要问题。随着遥感技术的发展,高分辨率遥感影像中携带有大量相似的具有尺度不变特征的地物,传统的地物识别方法难以适应这一发展,亟需对其进行改进。针对高分遥感影像,在SIFT(Scale-invariant Feature Transform )算法的基础上进行改进并得出一种快速精准的地物识别算法DBSIFT(Double Backward SIFT),实现了相似地物多对一的模式识别。DBSIFT在原算法的基础上构造了二重差金字塔,利用DP(Dirichlet Process)识别出相似地物并对其进行分割。在几何与算数关系上,选取9个指标对分割精度进行评价。实验中,使用该方法得到的地物能够被准确识别,且分割效果良好,说明了该算法的有效性。

关键词: 地物识别,SIFT,金字塔,DP

Abstract: Object recognition has always been a significant problem in the field of remote sensing image processing.With the development of remote sensing technology,the high resolution remote sensing images carry plenty of scale invariant features which are highly correlated with each other,and the traditional recognition methods are difficult to adapt this development.Based on the SIFT(Scale-invariant Feature Transform)algorithm,a fast and accurate algorithm for ground object recognition was proposed,namely DBSIFT(Double Backward SIFT).This method constructs the new pyramid based on SIFT,uses DP(Dirichlet Process) to identify the similar features,and then segments them.Weighing upon the relationship between geometry and arithmetic,nine indexes were selected to evaluate the accuracy of segmentation.In the experiment,similar ground object can be identified accurately,and the segmentation result’s performance is well.The effectiveness of this method is further explained.

Key words: Object recognition,SIFT,Pyramid algorithm,DP

[1] PESARESI M,BENEDIKTSSON J A.A new approach for the morphological segmentation of high-resolution satellite imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):309-320.
[2] CHEN Meng-ting,YAN Dong-mei,WANG Gang.High resolution remote sensing image matching algorithm based on Harris corner and SIFT descriptor[J].Chinese Journal of Image and Graphics,2012,7(11):1453-1459.(in Chinese) 陈梦婷,闫冬梅,王刚.基于 Harris 角点和 SIFT 描述符的高分辨率遥感影像匹配算法[J].中国图象图形学报,2012,17(11):1453-1459.
[3] SONG Z,LI S,GEORGE T F.Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories[J].Optics Express,2010,18(2):513-522.
[4] GE Pan-pan,CHEN Qiang,GU Yi-he.Based on Harris cornerand surf feature of remote sensing image matching algorithm [J].Application Research of Computers,2014,1(7):2205-2208.(in Chinese) 葛盼盼,陈强,顾一禾.基于Harris角点和SURF特征的遥感图像匹配算法[J].计算机应用研究,2014,31(7):2205-2208.
[5] MOBLEY C D,SUNDMAN L K,DAVIS C O,et al.Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables[J].Applied Optics,2005,44(17):3576-3592.
[6] STERNLICHT D D,DE MOUSTIER C P.Remote sensing of sediment characteristics by optimized echo-envelope matching[J].The Journal of the Acoustical Society of America,2003,114(5):2727-2743.
[7] LOWE D G.Object recognition from local scale-invariant fea-tures[C]∥The Proceedings of the Seventh IEEE International Conference on.IEEE,Computer Vision,1999,2:1150-1157.
[8] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[9] MIKOLAJCZYK K,SCHMID C.Scale & affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86.
[10] SEDAGHAT A,EBADI H.Remote Sensing Image MatchingBased on Adaptive Binning SIFT Descriptor[J].IEEE Transactions on Geosience & Remote Sensing,2015,3(10):5283-5292.
[11] BENEDIKTSSON J A,PESARESI M,A MASON K.Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):1940-1949.
[12] KOENDERINK J J.Scale-time[J].Biological Cybernetics,1988,58(3):159-162.
[13] LINDEBERG T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Journal of Applied Statistics,1994,21(1/2):225-270.
[14] DU B,ZHANG L.A discriminative metric learning based anomaly detection method[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(11):6844-6857.
[15] DU B,ZHANG L.Target detection based on a dynamic sub-space[J].Pattern Recognition,2014,47(1):344-358.
[16] ZHANG F,DU B,ZHANG L.Saliency-guided unsupervised feature learning for scene classification[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(4):2175-2184.
[17] ADELSON E H,ANDERSON C H,BERGEN J R,et al.Pyramid methods in image processing[J].RCA Engineer,1984,29(6):33-41.
[18] FERGUSON T S.A Bayesian analysis of some nonparametric problems[J].The annals of statistics,1973:209-230.
[19] MEI Su-yu,WANG Fei,ZHOU Shui-geng.Dirichlet process mix-ture model,the extended model and application [J].Science Bulletin,2013,7(34):3243-3257.(in Chinese) 梅素玉,王飞,周水庚.狄利克雷过程混合模型,扩展模型及应用[J].科学通报,2013,57(34):3243-3257.
[20] ZHANG Lin,LIU Hui.The clustering algorithm of mixed modelin Dirichlet process [J].Journal of China University of Mining and Technology,2012,1(1):159-163.(in Chinese) 张林,刘辉.Dirichlet 过程混合模型的聚类算法[J].中国矿业大学学报,2012,41(1):159-163.
[21] NEUBERT M,HEROLD H,MEINEL G.Evaluation of remote sensing image segmentation quality-further results and concepts[C]∥ Proceedings of the 1 st International Conference on Object-Based Image Analysis.2006.
[22] LIU Y,BIAN L,MENG Y,et al.Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68(1):144-156.
[23] ZHANG X,XIAO P,FENG X.An unsupervised evaluation me-thod for remotely sensed imagery segmentation[J].IEEE Geoscience & Remote Sensing Letters,2012,9(2):156-160.
[24] NEUBERT M,HEROLD H.Assessment of remote sensing image segmentation quality[C]∥Proceedings of Geobia Pixels Objects Intelligence-geographic Object Based Image Analysis for the St Century.2008.
[25] CARDOSO J S,CORTE-REAL L.Toward a generic evaluation of image segmentation[J].IEEE Transactions on Image Processing,2005,14(11):1773-1782.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!