计算机科学 ›› 2017, Vol. 44 ›› Issue (11): 146-155.doi: 10.11896/j.issn.1002-137X.2017.11.022

• 2016 年全国软件与应用学术会议 • 上一篇    下一篇

面向Issue跟踪系统的变更请求报告关闭可能性预测

熊文军,张璇,王旭,李彤,尹春林   

  1. 云南大学软件学院 昆明650091,云南大学软件学院 昆明650091;云南省软件工程重点实验室 昆明650091,云南大学经济学院 昆明650091,云南大学软件学院 昆明650091;云南省软件工程重点实验室 昆明650091,云南大学软件学院 昆明650091
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61502413,5,61379032,4),云南省科技计划项目(2016FB106),云南省教育厅科学研究基金(2015Z020,2013A056),云南省软件工程重点实验室开放基金(2015SE202),云南省创新团队“数据驱动的软件工程创新团队”项目,云南大学高水平创新团队“软件工程创新团队”专项项目,云南大学“中青年骨干教师培养计划”专项项目云南大学人文社科基金(13YNUHSS007)资助

Prediction on Closed-probability of Change Request Report for Issue Tracking System

XIONG Wen-jun, ZHANG Xuan, WANG Xu, LI Tong and YIN Chun-lin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 在Issue跟踪系统中存在大量长期未关闭的变更请求报告,增加了开发者不断点击和阅读这些报告的可能性,严重影响了软件需求管理任务的实施和用户的反馈体验。准确和及时地 预测这些报告关闭的可能性或重要性可以提高软件维护任务的质量。定义若干衡量变更请求报告特征的指标,选择在训练数据集上预测效果最佳的指标构建Logistic回归预测模型。使用提出的方法对20个SourceForge项目构成的测试数据集进行实验,得到平均查全率为94%和平均伪正率为14%的结果。实验结果表明,提出的方法能在测试数据集上取得很好的预测性能;关闭状态的变更请求报告所占的百分比或数量大小并不影响模型的性能;变更请求报告具有的某些特征可用于预测其在下一版本中得到关闭的可能性。

关键词: 变更请求报告,软件需求,缺陷报告,报告优先级

Abstract: There are lots of change request reports without being closed for a long time in the Issue tracking system,which increases the likelihood of developers to click and read the reports again and again.It seriously affects the imple-mentation of management task of software requirements and the feedback experiences of users.The accurate and instant prediction of closed-probability or importance of these reports can improve the quality of the task of software maintenance.Several metrics were defined to measure the feature of change request,and Logistic regression prediction model was built by using these best predictive metrics on datasets for training.Then experiments which applied proposed method were performed on datasets of testing which contain 20 SourceForge projects,and achieved a result that average recall of 95% and average FPR (False Positive Rate) of 14%.Analysis of experimental result shows that the proposed method can achieve a good prediction performance on datasets of testing,and closed-percentage or size of change requests report doesn’t affect the performance of the model,and some features of change request report can be used to predict its closed-probability in the next version.

Key words: Change request report,Software requirement,Bug report,Prioritization of report

[1] ANVIK J,HIEW L,MURPHY G C.Who should fix this bug?[C]∥Proceedings of the 28th International Conference on Software Engineering.ACM,2006:361-370.
[2] CˇUBRANIC' D.Automatic bug triage using text categorization[C]∥Proceedings of the Sixteenth International Conference on Software Engineering & Knowledge Engineering(SEKE 2004).2004.
[3] ANVIK J.Assisting bug report triage through recommendation[D].Vancouver:University of British Columbia,2007.
[4] ZHANG J,WANG X,HAO D,et al.A survey on bug-report analysis[J].Science China Information Sciences,2015,58(2):1-24.
[5] WEISS D,ENTRY B E X.A large crawl and quantitative analysis of open source projects hosted on sourceforge.http://core.ac.uk/display/24543641.
[6] RAYMOND E.The cathedral and the bazaar[J].Knowledge,Technology & Policy,1999,12(3):23-49.
[7] LOCONSOLE A,BRSTLER J.An Industrial Case Study on Requirements Volatility Measures[C]∥APSEC.2005:249-256.
[8] LOCONSOLE A,BRSTLER J.A Correlational Study on Four Size Measures as Predictors of Requirements Volatility[J].Submitted to Journal of Software Measurement,2007:166-170.
[9] PFAHL D,LEBSANFT K.Using simulation to analyse the impact of software requirement volatility on project performance[J].Information and Software Technology,2000,42(14):1001-1008.
[10] STARK G E,OMAN P,SKILLICORN A,et al.An examination of the effects of requirements changes on software maintenance releases[J].Journal of Software Maintenance,1999,11(5):293-309.
[11] ZOWGHI D,NURMULIANI N.A study of the impact of requirements volatility on software project performance[C]∥Ninth Asia-Pacific Software Engineering Conference.IEEE,2002:3-11.
[12] ALI M J.Metrics for requirements engineering.http://www8.cs.umu.se/education/examina/Rapporter/JaveedAli.pdf.
[13] MENZIES T,MARCUS A.Automated severity assessment of software defect reports[C]∥IEEE International Conference on Software Maintenance(ICSM 2008).IEEE,2008:346-355.
[14] HOOIMEIJER P,WEIMER W.Modeling bug report quality[C]∥Proceedings of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering.ACM,2007:34-43.
[15] ZHANG H.An investigation of the relationships between lines of code and defects[C]∥IEEE International Conference on Software Maintenance(ICSM 2009).IEEE,2009:274-283.
[16] BETTENBURG N,JUST S,SCHRTER A,et al.Quality ofbug reports in Eclipse[C]∥Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology EXchange.ACM,2007:21-25.
[17] BETTENBURG N,JUST S,SCHRTER A,et al.What makes a good bug report?[C]∥Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering.ACM,2008:308-318.
[18] CHAMBERS J M,HASTIE T J.Statistical models in S[M].CRC Press,Inc.,1991.
[19] TAN P N.Introduction to data mining[M].Pearson Education India,2006.
[20] GIGER E,PINZGER M,GALL H.Predicting the fix time ofbugs[C]∥Proceedings of the 2nd International Workshop on Recommendation Systems for Software Engineering.ACM,2010:52-56.
[21] SHI L,WANG Q,LI M.Learning from evolution history to predict future requirement changes[C]∥2013 21st IEEE International Requirements Engineering Conference (RE).IEEE,2013:135-144.
[22] SCHWEIK C M,ENGLISH R,HAIRE S.Factors leading tosuccess or abandonment of open source commons:An empirical analysis of Sourceforge.net projects[J].Fatigue & Fracture of Engineering Materials & Structures,2009,2(7):567-572.
[23] GAROUSI V,LEITCH J.IssuePlayer:An extensible framework for visual assessment of issue management in software development projects[J].Journal of Visual Languages & Computing,2010,21(3):121-135.
[24] ABDOU T,GROGONO P,KAMTHAN P.Managing Corrective Actions to Closure in Open Source Software Test Process[C]∥SEKE.2013:306-311.
[25] HOWISON J,CONKLIN M,CROWSTON K.FLOSSmole:Acollaborative repository for FLOSS research data and analyses[J].International Journal of Information Technology and Web Engineering (IJITWE),2006,1(3):17-26.
[26] MADEY G.The sourceforge research data archive (SRDA)[D].South Bend:University of Notre Dame,2010.
[27] UDDIN J,GHAZALI R,DERIS M M,et al.A survey on bug prioritization[J].Artificial Intelligence Review,2016,7(2):145-180.
[28] KANWAL J,MAQBOOL O.Managing open bug repositoriesthrough bug report prioritization using SVMs[C]∥Proceedings of the International Conference on Open-Source Systems and Technologies.Lahore,Pakistan,2010.
[29] CHATURVEDI K K,SINGH V B.Determining bug severity using machine learning techniques[C]∥2012 CSI Sixth International Conference on Software Engineering (CONSEG).IEEE,2012:1-6.
[30] LAMKANFI A,DEMEYER S,GIGER E,et al.Predicting the severity of a reported bug[C]∥2010 7th IEEE Working Confe-rence on Mining Software Repositories (MSR 2010).IEEE,2010:1-10.
[31] VALDIVIA GARCIA H,SHIHAB E.Characterizing and predicting blocking bugs in open source projects[C]∥Proceedings of the 11th Working Conference on Mining Software Repositories.ACM,2014:72-81.
[32] ALENEZI M,BANITAAN S.Bug Reports Prioritization:Which Features and Classifier to Use?[C]∥2013 12th International Conference on Machine Learning and Applications (ICMLA).IEEE,2013:112-116.
[33] KANWAL J,MAQBOOL O.Bug prioritization to facilitate bug report triage[J].Journal of Computer Science and Technology,2012,27(2):397-412.
[34] JIANHONG Z,SANDHU P S,RANI S.A Neural networkbased approach for modeling of severity of defects in function based software systems[C]∥2010 International Conference On Electronics and Information Engineering (ICEIE).IEEE,2010:568-575.
[35] HERZIG K,JUST S,ZELLER A.It’s not a bug,it’s a feature:how misclassification impacts bug prediction[C]∥Proceedings of the 2013 International Conference on Software Engineering.IEEE Press,2013:392-401.
[36] HOSMER JR D W,LEMESHOW S.Applied logistic regression[M].John Wiley & Sons,2004.
[37] TEAM C P.Capability Maturity ModelIntergration(CMMI),Version 1.1-Staged Representation[J].Software Engineering Institute Carnegie Mellon University,2002(1):31-37.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!