计算机科学 ›› 2017, Vol. 44 ›› Issue (3): 242-246.doi: 10.11896/j.issn.1002-137X.2017.03.050

• 人工智能 • 上一篇    下一篇

基于RVM的多类分类概率输出方法

李睿,王晓丹   

  1. 空军工程大学防空反导学院 西安710051,空军工程大学防空反导学院 西安710051
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目:基于多特征融合和集成学习研究的多目标识别技术研究(61273275),国家自然科学基金项目:基于SVM集成和证据理论的多传感器目标识别技术研究(60975026)资助

Multi-class Probability Output Based on Relevance Vector Machine

LI Rui and WANG Xiao-dan   

  • Online:2018-11-13 Published:2018-11-13

摘要: 基于相关向量机(Relevance Vector Machine,RVM)可以输出各类别成员概率的特点,对RVM二分类模型分别采用多元sigmoid方法和pairwise coupling方法,将其扩展为一对多分类器和一对一分类器,实现了多类分类及概率输出。基于人工高斯数据集和UCI数据集的实验仿真结果表明,所提方法不仅能够准确地求解样本后验概率,而且运行效率也比较高,同时能够保证较高的分类正确率。

关键词: 相关向量机,多类分类概率,成对分解

Abstract: Based on the probability of memberships estimated by RVM (Relevance Vector Machine) basic model,posterior probability estimating approaches in one-versus-all strategy by multivariate sigmoid function and one-versus-one strategy by pairwise coupling were presented.Experimental results based on artificial gauss datasets and UCI datasets show the proposed approaches can calculate posterior probability precisely and are more efficient,as well can ensure high classification performance.

Key words: RVM,Multi-class probability,Pairwise coupling

[1] TIPPING M E.The Relevance Vector Machine[J].Advances in Neural Information Processing Systems,1999,12(3):652-658.
[2] TIPPING M E.Sparse bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244.
[3] BISHOP C M,TIPPING M E.Variational Relevance VectorMachines[J].Eprint Arxiv,2002,28(3):46-53.
[4] MIANJI F A,ZHANG Y.Robust Hyperspectral ClassificationUsing Relevance Vector Machine[J].IEEE Transactions on Geo-science & Remote Sensing,2011,49(6):2100-2112.
[5] MENG Q F,CHEN Y H,ZHANG Q,et al.Local Prediction of Network Traffic Measurements Data Based on Relevance Vector Machine[J].Lecture Notes in Computer Science,2013,2(1):614-621.
[6] YANG C F,ZHANG Y.Study to speaker recognition usingRVM[J].Journal of Electronic Science and Technology,2010,9(2):311-315.(in Chinese) 杨成福,章毅.相关向量机及在说话人识别应用中的研究[J].电子科技大学学报,2010,9(2):311-315.
[7] LIU C Y,BI X J,WEI Q.Research and improvement of multiclass pattern classifier based on vector machine learning algorithm[J].Electric Machines and Control,2013,7(1):114-118.(in Chinese) 柳长源,毕晓君,韦琦.基于向量机学习算法的多模式分类器的研究及改进[J].电机与控制学报,2013,7(1):114-118.
[8] XIE H B,HUANG H,WU J,et al.A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.[J].Physiological Measurement,2015,36(2):191-206.
[9] WU H,LIU G,PU Z.Multi-Class Image Recognition Based on Relevance Vector Machine[C]∥ International Workshop on Intelligent Systems and Applications.2009:1-4.
[10] YI H,MEI L,LI L J,et al.Vibration Fault Diagnosis for Hydroe-lectric Generating Units Using the Multi-class Relevance Vector Machine[J].Proceedings of the CSEE,2014,4(17):2843-2850.(in Chinese) 易辉,梅磊,李丽娟,等.基于多分类相关向量机的水电机组振动故障诊断[J].中国电机工程学报,2014,4(17):2843-2850.
[11] DAMOULAS T,YING Y,GIROLAMI M A,et al.Inferring Sparse Kernel Combinations and Relevance Vectors:An Application to Subcellular Localization of Proteins[C]∥Seventh International Conference on Machine Learning & Applications.IEEE Computer Society,2008:577-582.
[12] PSORAKIS I,DAMOULAS T,GIROLAMI M A.Multiclassrelevance vector machines:sparsity and accuracy[J].IEEE Transactions on Neural Networks,2010,21(10):1588-1598.
[13] YIN J L,ZHU Y L,YU G Q.New transformer fault diagnosis method based on multi-class relevance vector machine[J].Power System Protection and Control,2013,1(5):77-82.(in Chinese) 尹金良,朱永利,俞国勤.基于多分类相关向量机的变压器故障诊断新方法[J].电力系统保护与控制,2013,1(5):77-82
[14] SHANG H K,YUAN J S,WANG Y,et al.Partial DischargePattern Recognition in Power Transformer Based on Multi-Kernel Multi-Class Relevance Vector Machine[J].Transactions of China Electrotechnical Society,2014,29(11):221-228.(in Chinese) 尚海昆,苑津莎,王瑜,等.多核多分类相关向量机在变压器局部放电模式识别中的应用[J].电工技术学报,2014,29(11):221-228.
[15] FOODY G M.RVM-based multi-class classification of remotely sensed data[J].International Journal of Remote Sensing,2008,29(6):1817-1823.
[16] WU T F,LIN C J,WENG R C.Probability Estimates for Multi-class Classification by Pairwise Coupling[J].Journal of Machine Learning Research,2004,5(4):975-1005.
[17] CHANG C C,LIN C J.LIBSVM:A library for support vector machines[J].Acm Transactions on Intelligent Systems & Technology,2011,2(3):389-396.
[18] PLATT J C.Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods[J].Advances in Large Margin Classifiers,1999,10:61-74.
[19] TIPPING M E.Sparse Bayesian models(and the RVM)[EB/OL].[2006-10-12].http://www.relevancevector.com.
[20] https://github.com/ipsorakis/mRVMs.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!