计算机科学 ›› 2017, Vol. 44 ›› Issue (8): 260-264.doi: 10.11896/j.issn.1002-137X.2017.08.044
李凯,顾丽凤,胡少方
LI Kai, GU Li-feng and HU Shao-fang
摘要: 模糊孪生支持向量机是一种重要的机器学习方法,克服了噪声或异常数据对分类的影响;然而,该方法考虑的仍是经验风险,从而使得训练过程易出现过拟合现象。为了解决该问题,通过引入调整项,提出了一种改进的模糊孪生支持向量机模型,利用二次规划求解方法和超松弛迭代法对模型进行求解,获得了用于分类的决策面。实验中选取UCI标准数据集验证了所提方法的有效性。
[1] VAPNIK V N.The nature of statistical learning theory[M].New York:Springer,1995. [2] MANGASARIAN O L,MUSICANT D R.Lagrangian support vector machines[J].Journal of Machine Learning Research,2001,1(3):161-177. [3] SCHOLKOPF B,SMOLA A J,WILLIAMSON R C,et al.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245. [4] BLOOM V,GRIVA I,KWON B,et al.Exterior-point methodfor support vector machines[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(7):1390-1393. [5] CHEN D D,TIAN Y J,LIU X H.Structural nonparallel support vector machine for pattern recognition[J].Pattern Recognition,2016,0:296-305. [6] LIN C F,WANG S D.Fuzzy support vector machines[J].IEEE Transaction on Neural Networks,2002,13(2):464-471. [7] WANG Y Q,WANG S Y,LAI K K.A new fuzzy support vector machine to evaluate credit risk[J].IEEE Transaction on Fuzzy System,2005,13(6):820-831 [8] YANG X W,ZHANG G Q,LU J,et al.A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J].IEEE Tran-sactions on Fuzzy Systems,2011,19(1):105-115. [9] ZHANG J H,WANG Y Y.A rough margin based support vector machine[J].Information Sciences,2008,178(9):2204-2214. [10] XU Y T.A rough margin-based linear υ support vector regression[J].Statistics and Probability Letters,2012,82(3):528-534. [11] CHEN D G,HE Q,WANG X Z.FRSVMs:Fuzzy rough setbased support vector machines[J].Fuzzy Sets and Systems,2010,161(4):596-607. [12] SHIGEO A.Fuzzy support vector machines for multilabel classification[J].Pattern Recognition,2015,8(6):2110-2117. [13] FUNG G,MANGASARIAN O L.Proximal support vector machine classifiers[C]∥Proceedings of the 7th International Conference on Knowledge and Data Discovery.2001:77-86. [14] MANGASARIAN O L,WILD E W.Multisurface proximal sup-port vector classification via generalized eigenvalues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):69-74. [15] JAYADEVA R K,KHEMCHANDANI R,CHANDRA S.Twin support vector machine for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910. [16] PENG X J.A v-twin support vector machine(v-TSVM)classifier and its geometric algorithms[J].Information Sciences,2010,0(20):3863-3875. [17] RESHMA K,POOJA S,SURESH C.Improvements on ν-twin support vector machine[J].Neural Networks,2016,9:97-107. [18] SHAO Y H,ZHANG C H,WANG X B,et al.Improvements on twin support vector machines[J].IEEE Transactions on Neural Networks,2011,22(6):962-968. [19] LI K,MA H Y.A Fuzzy Twin Support Vector Machine Algorithm[J].International Journal of Application or Innovation in Engineering & Management,2013,2(3):459-465. [20] MANGASARIAN O L,MUSICANT D R.Successive overrela-xation for support vector machines[J].IEEE Transactions on Neural Networks,1999,0(5):1032-1037. [21] BLAKE C,MERZ C J.UCI Repository for machine learning databases[EB/OL].(1998-01-12)[2014-09-06].IrvineCA:University of California,Department of Information and Computer Sciences.http://www.ics.uci.edu/mlearn/MLRepository.html. |
No related articles found! |
|