计算机科学 ›› 2017, Vol. 44 ›› Issue (8): 260-264.doi: 10.11896/j.issn.1002-137X.2017.08.044

• 人工智能 • 上一篇    下一篇

引入调整项的模糊孪生支持向量机

李凯,顾丽凤,胡少方   

  1. 河北大学计算机科学与技术学院 保定071000,河北大学计算机科学与技术学院 保定071000,河北大学计算机科学与技术学院 保定071000
  • 出版日期:2018-11-13 发布日期:2018-11-13

Regularized Fuzzy Twin Support Vector Machine

LI Kai, GU Li-feng and HU Shao-fang   

  • Online:2018-11-13 Published:2018-11-13

摘要: 模糊孪生支持向量机是一种重要的机器学习方法,克服了噪声或异常数据对分类的影响;然而,该方法考虑的仍是经验风险,从而使得训练过程易出现过拟合现象。为了解决该问题,通过引入调整项,提出了一种改进的模糊孪生支持向量机模型,利用二次规划求解方法和超松弛迭代法对模型进行求解,获得了用于分类的决策面。实验中选取UCI标准数据集验证了所提方法的有效性。

关键词: 孪生支持向量机,结构风险,经验风险,模糊隶属度

Abstract: Fuzzy twin support vector machine is an important machine learning method and it overcomes the impact of noise and outlier data on classification.However,this method still accomplishes minimization of empirical risk so that overfitting is easily produced in the process of training.In order to solve this problem,a modified fuzzy twin support vector machine model was presented by introducing regularized item.Classifier was obtained by using quadratic programming and over-relaxation method to solve the model.Some UCI datasets were selected to conduct the experiments.The results validates the effectiveness of the proposed method.

Key words: Twin support vector machine,Structural risk,Empirical risk,Fuzzy membership

[1] VAPNIK V N.The nature of statistical learning theory[M].New York:Springer,1995.
[2] MANGASARIAN O L,MUSICANT D R.Lagrangian support vector machines[J].Journal of Machine Learning Research,2001,1(3):161-177.
[3] SCHOLKOPF B,SMOLA A J,WILLIAMSON R C,et al.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245.
[4] BLOOM V,GRIVA I,KWON B,et al.Exterior-point methodfor support vector machines[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(7):1390-1393.
[5] CHEN D D,TIAN Y J,LIU X H.Structural nonparallel support vector machine for pattern recognition[J].Pattern Recognition,2016,0:296-305.
[6] LIN C F,WANG S D.Fuzzy support vector machines[J].IEEE Transaction on Neural Networks,2002,13(2):464-471.
[7] WANG Y Q,WANG S Y,LAI K K.A new fuzzy support vector machine to evaluate credit risk[J].IEEE Transaction on Fuzzy System,2005,13(6):820-831
[8] YANG X W,ZHANG G Q,LU J,et al.A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J].IEEE Tran-sactions on Fuzzy Systems,2011,19(1):105-115.
[9] ZHANG J H,WANG Y Y.A rough margin based support vector machine[J].Information Sciences,2008,178(9):2204-2214.
[10] XU Y T.A rough margin-based linear υ support vector regression[J].Statistics and Probability Letters,2012,82(3):528-534.
[11] CHEN D G,HE Q,WANG X Z.FRSVMs:Fuzzy rough setbased support vector machines[J].Fuzzy Sets and Systems,2010,161(4):596-607.
[12] SHIGEO A.Fuzzy support vector machines for multilabel classification[J].Pattern Recognition,2015,8(6):2110-2117.
[13] FUNG G,MANGASARIAN O L.Proximal support vector machine classifiers[C]∥Proceedings of the 7th International Conference on Knowledge and Data Discovery.2001:77-86.
[14] MANGASARIAN O L,WILD E W.Multisurface proximal sup-port vector classification via generalized eigenvalues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):69-74.
[15] JAYADEVA R K,KHEMCHANDANI R,CHANDRA S.Twin support vector machine for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[16] PENG X J.A v-twin support vector machine(v-TSVM)classifier and its geometric algorithms[J].Information Sciences,2010,0(20):3863-3875.
[17] RESHMA K,POOJA S,SURESH C.Improvements on ν-twin support vector machine[J].Neural Networks,2016,9:97-107.
[18] SHAO Y H,ZHANG C H,WANG X B,et al.Improvements on twin support vector machines[J].IEEE Transactions on Neural Networks,2011,22(6):962-968.
[19] LI K,MA H Y.A Fuzzy Twin Support Vector Machine Algorithm[J].International Journal of Application or Innovation in Engineering & Management,2013,2(3):459-465.
[20] MANGASARIAN O L,MUSICANT D R.Successive overrela-xation for support vector machines[J].IEEE Transactions on Neural Networks,1999,0(5):1032-1037.
[21] BLAKE C,MERZ C J.UCI Repository for machine learning databases[EB/OL].(1998-01-12)[2014-09-06].IrvineCA:University of California,Department of Information and Computer Sciences.http://www.ics.uci.edu/mlearn/MLRepository.html.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!