计算机科学 ›› 2017, Vol. 44 ›› Issue (Z11): 297-301.doi: 10.11896/j.issn.1002-137X.2017.11A.063

• 网络与通信 • 上一篇    下一篇

基于地图信息和位置自适应修正的粒子滤波室内定位方法

宦若虹,陈月   

  1. 浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61302129)资助

Indoor Localization Based on Map Information and Particle Filter with Position Adaptive Correction

HUAN Ruo-hong and CHEN Yue   

  • Online:2018-12-01 Published:2018-12-01

摘要: 现有以航位推算为基础的室内定位算法存在累积误差大、定位精度较低等缺点,为此提出一种基于地图信息和位置自适应修正的粒子滤波室内定位方法。该方法利用已知的室内地图信息在定位过程中控制粒子的生灭,在重采样过程中根据粒子的退化情况对补偿粒子的位置进行自适应调整,从而修正目标位置。实验结果表明,该定位方法克服了航位推算算法的累积误差问题,有效提高了定位精度。

关键词: 室内定位,航位推算,粒子滤波,地图信息

Abstract: As the existing indoor localization algorithm based on dead reckoning has the disadvantages of high cumulative error and low localization accuracy,an indoor localization approach based on map information and particle filter with position adaptive correction was proposed in this paper.The approach uses the known map information to control the birth and death of the particles during the localization process,and adaptively adjusts the positions of the compensating particles in the resampling stage according to the situation of particle degeneracy,thereby correcting the object position.The experimental results show that the proposed approach overcomes the shortcoming of cumulative error of dead re-ckoning algorithm and improves the localization accuracy.

Key words: Indoor localization,Dead reckoning,Particle filter,Map information

[1] PANYOV A A,GOLOVAN A A,SMIRNOV A S.Indoor positioning using Wi-Fi fingerprinting pedestrian dead reckoning and aided INS[C]∥International Symposium on Inertial Sensors and Systems.IEEE,2014:1-2.
[2] KOUROGI M,KURATA T.A method of pedestrian dead recko-ning for smartphones using frequency domain analysis on patterns of acceleration and angular velocity[C]∥Position,Location and Navigation Symposium-PLANS 2014.IEEE,2014:164-168.
[3] TIAN Q,SALCIC Z,KEVIN I,et al.A Multi-Mode Dead Recko-ning System for Pedestrian Tracking Using Smartphones[J].IEEE Sensors Journal,2016,16(7):2079-2093.
[4] PAI D,SASI I,MANTRIPRAGADA P S,et al.Padati:A robust pedestrian dead reckoning system on smartphones[C]∥International Conference on Trust,Security and Privacy in Computing and Communications.IEEE,2012:2000-2007.
[5] 杨增瑞,段其昌,毛明轩,等.基于磁场指纹辅助的手机室内定位系统[J].传感技术学报,2016,29(9):1441-1448.
[6] QIAN J,MA J,YING R,et al.An Improved Indoor Localization Method Using Smartphone Inertial Sensors[C]∥International Conference on Indoor Positioning and Indoor Navigation.IEEE,2013:1-7.
[7] KANG W,HAN Y.SmartPDR:Smartphone-based pedestriandead reckoning for indoor localization[J].IEEE Sensors Journal,2015,15(5):2906-2916.
[8] PARK M C,CHIRAKKAL V V,HAN D S.Robust pedestrian dead reckoning for indoor positioning using smartphone[C]∥International Conference on Consumer Electronics (ICCE).IEEE,2015:80-81.
[9] 赵逢达,闫亭亭,孔令富.一种基于粒子滤波的智能移动终端室内行人定位算法[J].小型微型计算机系统,2014,35(8):1842-1847.
[10] MURAKAMI Y,OHTSUKI T.Localization calibration using illuminance sensor for pedestrian dead reckoning with smartphones[C]∥2014 IEEE 25th Annual International Symposium on Personal,Indoor,and Mobile Radio Communication (PIMRC).IEEE,2014:2034-2039.
[11] HUANG C,HE S,JIANG Z,et al.Indoor positioning system based on improved PDR and magnetic calibration using smartphone[C]∥IEEE International Symposium on Personal,Indoor,and Mobile Radio Communication.IEEE,2014:2099-2103.
[12] QIU J W,TSENG Y C.M2M Encountering:Collaborative Localization via Instant Inter-Particle Filter Data Fusion[J].IEEE Sensors Journal,2016,16(14):5715-5724.
[13] AKIYAMA T,OHASHI H,SATO A,et al.Pedestrian DeadReckoning using adaptive particle filter to human moving mode[C]∥International Conference on Indoor Positioning and Indoor Navigation.IEEE,2013:1-7.
[14] 李红春,赵晓光,谭民.无线传感器网络中基于粒子滤波的人员跟踪方法[J].传感技术学报,2012,25(6):807-8 14.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!