计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 126-128.doi: 10.11896/j.issn.1002-137X.2017.6A.028

• 智能计算 • 上一篇    下一篇

基于BP神经网络和遗传算法的养殖水域预警模型

徐云娟   

  1. 苏州托普信息职业技术学院 昆山215311
  • 出版日期:2017-12-01 发布日期:2018-12-01

Early Warning Model for Water Eutrophication Based on BP Artificial Neural Network and Genetic Algorithm

XU Yun-juan   

  • Online:2017-12-01 Published:2018-12-01

摘要: 随着我国经济的快速发展,环境保护工作面临前所未有的压力。为有效加强水产养殖水域环境的监管力度,应对突发性环境污染事故对社会生活和经济发展的影响,建立BP神经网络来拟合水产养殖水域饲料投放与总磷(TP)、总氮(TN)、透明度(SD)以及耗氧量(COD)等富营养指标变化情况的对应函数关系,并利用遗传算法来实现目标函数的优化方法,形成养殖水域预警模型,为水域环境治理和公共决策提供技术支撑。利用该模型对鄱阳湖新型水产养殖基地的样本进行分析,取得了很好的预测效果。

关键词: BP神经网络,遗传算法,富营养化,预警模型

Abstract: With the economic development,the environmental protection work is facing unprecedented pressure.In order to enhance the aquatic environment control effectively and to deal with the impact of sudden environmental pollution accident on the social and economic development,the paper established BP neural network theory for fitting aquaculture feed,and total phosphorus,total nitrogen,transparency,as well as oxygen consumption,and other nutritious indicators of changes in the corresponding function.Furthermore,the paper used genetic algorithm to achieve optimization methods of the objective function,and formed a breeding waters early warning model.The model provides technical support for water environment governance and public decision-making.At the same time,the paper makes further analysis for the samples of Poyang Lake’s new aquaculture base and forecasts good results by using the model.

Key words: BP neural network,Genetic algorithm,Eutrophication,Early warning model

[1] RAFIQ M Y,BUGMANN G,EASTERBROOK D J.Neuralnetwork design for engineering applications[J].Computers and Structures,2001,79(17):1541-1552.
[2] JAVADI A A,FARMANI R,TAN T P.A hybrid intelligent genetic algorithm[J].Advanced Engineering Informatics,2005,19(4):255-262.
[3] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[4] RAMIREZ R,HAZAN A.Inducing a Generative ExpressivePerformance Model using a Sequential-Covering Genetic Algorithm[C]∥Genetic And Evolutionary Computation Conference(GECCO 2007).2007.
[5] WANG P,JIANG H L.Neural Network Optimization Algo-rithm Based on Improvement Genetic Algorithm[C]∥International Symposium on Intelligent Information Systems And Applications.2009.
[6] CLOERN J E.Our evolving conceptual model of the coastal eutrophication problem[J].Marine Ecology-Progress Series,2001,210:223-253.
[7] KARAMOUZ M,TAHERIYOUN M,B AGHVAND A,et al.Optimization of Watershed Control Strategies for Reservoir Eutrophication Management [J].Journal of Irrigation and Draina-ge Engineering-Asce,2010,136(12):847-861.
[8] LIU L H,CHEN J,XU L X.Realization and application re-search of BP neural network based on MATLAB[C]∥International Seminar on Future Biomedical Information Engineering(FBIE 2008).2008.
[9] QUN M,HUI H,YANG H,et al.Assessment of water quality of Nansi Lake using BP neural network based on MATLAB[C]∥Proceedings of Information Technology And Environmental System Sciences(ITESS 2008).2008.
[10] ZENG Q W,XU Z H,WU J A.Prediction of Electricity Consumption Based on Genetic Algorithm-RBF Neural Network[C]∥2ND IEEE International Conference on Advanced Computer Control (ICACC 2010).2010.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!