计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 188-191.doi: 10.11896/j.issn.1002-137X.2017.6A.043

• 模式识别与图像处理 • 上一篇    下一篇

组合SVM分类器在行人检测中的研究

邹冲,蔡敦波,刘莹,赵娜,赵彤洲   

  1. 武汉工程大学智能机器人湖北省重点实验室 武汉430205;武汉工程大学计算机科学与工程学院 武汉430205,武汉工程大学智能机器人湖北省重点实验室 武汉430205;武汉工程大学计算机科学与工程学院 武汉430205,武汉工程大学智能机器人湖北省重点实验室 武汉430205;武汉工程大学计算机科学与工程学院 武汉430205,武汉工程大学智能机器人湖北省重点实验室 武汉430205;武汉工程大学计算机科学与工程学院 武汉430205,武汉工程大学智能机器人湖北省重点实验室 武汉430205;武汉工程大学计算机科学与工程学院 武汉430205;华中科技大学自动化学院 武汉430074
  • 出版日期:2017-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金资助

Research of Combination SVM Classifier in Pedestrian Detection

ZOU Chong, CAI Dun-bo, LIU Ying, Z HAO Na and ZHAO Tong-zhou   

  • Online:2017-12-01 Published:2018-12-01

摘要: 在基于HOG特征的SVM行人检测算法的基础上,提出了组合分类器的改进算法。该算法首先采用多尺度滑动窗口提取HOG特征,并对单个SVM分别进行训练,再将训练好的SVM分别采用串联、并联结构形成新分类器后对行人进行检测。为解决用多尺度滑动窗口提取特征时产生的目标候选区域重叠问题,采用非极大值抑制算法对重叠区域进行融合,进而得到准确候选区。实验表明,组合的SVM分类器可以有效降低误检率和漏检率。

关键词: 行人检测,HOG,SVM,NMS,组合分类器

Abstract: On the basis of histogram of oriented gradient and support vector machine(HOG-SVM)algorithm,this paper proposed an improved algorithm for combination classifiers.Firstly,This algorithm uses multi-scale sliding windows to extract the HOG features and trains SVM separately.Then,the trained SVM which is formed to a new classifier in series or parallel is used to detect pedestrian.In order to solve the problem that the target area is overlapped when features are extracted in multi-scale sliding windows,the non-maximum suppression (NMS)algorithm is used to fuse the rectangles and to get exact candidate region.Experiments show that combined SVM classifiers can effectively reduce the false detection rate and missed rate.

Key words: Pedestrian detection,Histogram of oriented gradient(HOG),Support vector machine(SVM),Non-maximum suppression(NMS),Combination classifiers

[1] FLORES A,BELONGIE S.Removing pedestrians from Google street view images[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.San Francisco:IEEE Press,2010:53-58.
[2] ANDRILUKA M,SCHNITZSPAN P,MEYER J,et al.Vision based victim detection from unmanned aerial vehicles[C]∥Proceedings of IEEE Conference on Intelligent Robots and Systems.Taipei:IEEE Press,2010:1740-1747.
[3] REILLY V,SOLMAZ B,SHAHM.Geometric constraints for human detection in aerial imagery[C]∥Proceedings of Springer Conference on Computer Vision.Heraklion:Springer Press,2010:252-265.
[4] OREN M,PAPAGEORGIOU C,SINHA P,et al.Pedestrian detection using wavelet templates[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Bombay:IEEE Press,1997:193-199.
[5] 王坚,兰天.基于稀疏表达和机器学习的行人检测技术研究[J].计算机科学,2016,43(s1):207-209.
[6] DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Press,2005:886-893.
[7] MAJI S,BERG A C,MALIK J.Classification using intersection kernel support vector machines is efficient[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Anchorage:IEEE Press,2008:1-8.
[8] DOLLAR P,APPER R,BELONGIES S,et al.Fast Feature Py-ramids for Object Detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,36(8):1532-1545.
[9] 苏松志.行人检测:理论与实践[M].厦门:厦门大学出版社,2016:21-112.
[10] 苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820.
[11] 甘玲,邹宽中,刘肖.基于PCA降维的多特征级联的行人检测[J].计算机科学,2016,43(6):308-311.
[12] 方智文,曹治国,肖阳.基于多尺度局部极值和边缘检测的目标性算法[J].信号处理,2016,32(8):911-921.
[13] 李航.统计学习方法[M].北京:清华大学出版社,2012:95-136

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!