计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 455-458.doi: 10.11896/j.issn.1002-137X.2017.6A.102

• 大数据与数据挖掘 • 上一篇    下一篇

针对专业分流数据的双层放射环矩阵可视化

李慧,陈红倩,董爽,马丽仪   

  1. 北京联合大学管理学院 北京100101,北京工商大学计算机与信息工程学院 北京100048,北京联合大学管理学院 北京100101,北京联合大学管理学院 北京100101
  • 出版日期:2017-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受北京市自然基金资助

Double Sunburst Matrix Visualization to Overview Majors Distributary Data

LI Hui, CHEN Hong-qian, DONG Shuang and MA Li-yi   

  • Online:2017-12-01 Published:2018-12-01

摘要: 为表达并分析专业分流数据中的多属性流向特征分析,提出了一种双层放射环矩阵的可视化方法。该方法首先基于各属性条件对专业分流数据进行筛选和分类统计,然后将各统计结果指标映射为可视元素并展现到最终的可视化结果中。可视元素映射过程主要包含3部分:借鉴气泡图方法,将专业分流中的学生人数映射为气泡图形式;将饼图中的对比关系引入气泡图,将专业分流中各条件下的性别比例映射为放射环内层的饼图形式;借鉴Sunburst方法,将不同绩点条件下的学生数统计结果映射为放射环外层的区块。依托案例数据的实验结果与学生管理人员的评测结果表明,该可视化结果能对学生人数、性别、绩点等属性的流向特征进行直观表达,并能够对专业分流中的学生进行快速分类与细化,对专业建设与培养计划的制定起到良好的指导作用。

关键词: 数据可视化,专业分流数据,双层放射环,学生管理

Abstract: To show and analyze the feature of attribute flow in majors distributary data,a sunburst matrix visualization method was proposed in the paper.The data with various attributes are firstly selected and counted in the method.The statistical data are mapped to the visual elements of visualization results.The mapping procedure includes three parts.In the first part,the scattered bubble charts are introduced to express the whole statistical numbers of student with various source and destination.Secondly,contrast method of pie chart is introduced into bubbles to show its gender proportion.The pie chart is adopted as the inner layer of sunburst.Thirdly,the students’ grade point attribute in each category are designed to display comparably in the outer layer of sunburst.The experimental results and the evaluation of the mana-gement staff denoted that the visualization results can be expressed directly to the flow characteristics such as the number of students,gender proportion,and grade point and so on.The detailed classification of students and professional construction and training are expected to achieve according to the visualization results.

Key words: Data visualization,Majors distributary data,Double sunburst,Management of student

[1] 董泽芳,王晓辉.普林斯顿大学本科人才培养模式的特点及启示[J].高教探索,2014(2):77-81.
[2] 王卫红,蔡雪.计算机大类专业分流的实践与思考[J].计算机教育,2014(6):87-90
[3] 颜兵兵,姜永成,殷宝麟.大类招生模式下专业分流方案设计与实例分析[J].高教论坛,2014(9):44-47.
[4] 袁晓如,张昕,肖何,等.可视化研究前沿及展望[J].科研信息化技术与应用,2011,2(4):3-13.
[5] NEUMANN P,TANG A,CARPENDALE S.A Framework for Visual Information Analysis:Technical Report 2007-87123[R].University of Calgary,Calgary,AB,Canada,July 2007.
[6] KEIM D,QU H,MA K L.Big-Data visualization [J].Computer Graphics and Applications,IEEE,2013,33(4):20-21.
[7] 沛原.基于移动终端日志数据的人群特征可视化研究[D].杭州:浙江大学,2015.
[8] ZHAO J,COLLINS C,CHEVALIER F,et al.Interactive exploration of implicit and explicit relations in facet datasets[J].IEEE Trans.on Visualization and Computer Graphics,2013,19(12):2080-2089.
[9] 雷辉,陈海东,徐佳逸,等.不确定性可视化综述[J].计算机辅助设计与图形学学报,2013,25(3):294-303.
[10] 孙扬,封孝生,唐九阳,等.多维可视化技术综述[J].计算机科学,2008,35(11):1-7.
[11] ELMQVIST N,DRAGICEVIC P,FEKETE J D.Rolling thedice:Multi-dimensional visual exploration using scatter plot matrix navigation [J].IEEE Trans.Vis.Comput.Graph.,2008,14(6):1539-1148.
[12] POCO J,DASGUPTA A,WEI Y X,et al.SimilarityExplorer:A Visual Inter-Comparison Tool for Multifaceted Climate Data[J].Eurographics Conference on Visualization (EuroVis),2014,33(3):341-350.
[13] HOFMANN H,VENDETTUOLI M.Common Angle Plots asPerception-True Visualizations of Categorical Associations [J].IEEE Transactions on Visualization and Computer Graphics,IEEE Computer Society,2013,19(12):2297-2305.
[14] 陈谊,蔡进峰,石耀斌,等.基于平行坐标的多视图协同可视分析方法[J].系统仿真学报,2013,5(1):81-86.
[15] STOLPER C D,PERER A,et al.Progressive Visual Analytics:User-Driven Visual Exploration of In-Progress Analytics[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(12):1653.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!