计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 436-438.

• 大数据与数据挖掘 • 上一篇    下一篇

基于RFA模型和聚类分析的百度外卖客户细分

包志强1, 赵媛媛1, 赵研1, 胡啸天1, 高帆2   

  1. 西安邮电大学通信与信息工程学院 西安7101211
    航天科工集团第四研究院第九总体部 武汉4300402
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:包志强(1978-),男,博士,副教授,主要研究方向为数据挖掘、大数据分析、导航抗干扰;赵媛媛(1996-),女,硕士生,主要研究方向为数据挖掘、大数据分析,E-mail:1732055344@qq.com。
  • 基金资助:
    本文受陕西省教育厅专项科研计划项目(17JK0703)资助。

Segmentation of Baidu Takeaway Customer Based on RFA Model and Cluster Analysis

BAO Zhi-qiang1, ZHAO Yuan-yuan1, ZHAO Yan1, HU Xiao-tian1, GAO Fan2   

  1. Department of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China1
    The Ninth Research Institute of the General Department of the Fourth,Aerospace Science and Technology Group,Wuhan 430040,China2
  • Online:2019-02-26 Published:2019-02-26

摘要: 针对百度外卖行业具有的客户数量大、消费数据多、维度多等特点,提出一种基于客户消费行为视角的改进RFM模型。采用层次分析算法确定模型中各个变量的权重,并在此基础上采用K-Means聚类算法进行客户细分,计算确定客户对于商家的个人价值。数据分析结果表明,基于改进RFM模型的客户细分方法可以使商家对不同价值的客户采取针对性的策略。

关键词: K-Means聚类, 百度外卖, 改进RFM模型, 客户细分

Abstract: In view of the characteristics of Baidu Take-out industry,such as large number of customers,large consumption data,high dimensions and so on,this paper proposed an improved RFM model based on perspective of customer consumption behavior,and uses the AHP algorithm to determine the weight of each variable in the model.K-Means clustering algorithm is used for customer segmentation,and the customer’s personal value for the business is computed and determined .The results of data analysis show that the customer segmentation method based on the improved RFM model canmake merchants adopt targeted strategies for customers with different values.

Key words: Baidu takeaway, Client subdivision, Improved RFM model, K-Means clustering

中图分类号: 

  • F270
[1]李雪苑.浅谈第三方外卖平台的运营管理——以百度外卖为例[J].经贸实践,2016(8):208.
[2]SONG M,ZHAO X,HAIHONG E,et al.Statistics-based CRM approach via time series segmenting RFM on large scale data[C]∥International Conference on Utility and Cloud Computing.IEEE,2017:282-291.
[3]徐翔斌,王佳强,涂欢,等.基于改进RFM模型的电子商务客户细分[J].计算机应用,2012,32(5):1439-1442.
[4]吴晓雪.基于RFM改进模型的互联网金融平台用户细分研究[D].北京:北京交通大学,2016.
[5]王召义,汪琪.基于改进RFM模型的产品推荐算法[J].宿州学院学报,2016,31(11):101-104.
[6]何敏,张洪伟,张波.模糊ISODATA及在CRM中的应用[J].计算机应用,2005,25(6):1455-1457.
[7]HAN J W,KAMBER M.Data mining:Concepts and techniques[M].北京:机械工业出版社,2002.
[8]耿俊成,袁少光,万迪明,等.基于改进RFM模型的电力客户缴费渠道分析预测[J].电力信息与通信技术,2017,15(8):55-59.
[9]邓雪,李家铭,曾浩健,等.层次分析法权重计算方法分析及其应用研究[J].数学的实践与认识,2012,42(7):93-100.
[10]刘朝华.基于客户价值的客户分类模型研究[D].武汉:华中科技大学,2008.
[11]张良均,云伟标,王路,等.R语言数据分析与挖掘实战[M].北京:机械工业出版社,2015:46-47.
[1] 徐守坤, 倪楚涵, 吉晨晨, 李宁.
基于YOLOv3的施工场景安全帽佩戴的图像描述
Image Caption of Safety Helmets Wearing in Construction Scene Based on YOLOv3
计算机科学, 2020, 47(8): 233-240. https://doi.org/10.11896/jsjkx.190600109
[2] 侯媛媛, 何儒汉, 李敏, 陈佳.
结合卷积神经网络多层特征融合和K-Means聚类的服装图像检索方法
Clothing Image Retrieval Method Combining Convolutional Neural Network Multi-layerFeature Fusion and K-Means Clustering
计算机科学, 2019, 46(6A): 215-221.
[3] 胡梦琪, 郑继明.
基于量化颜色特征和SURF检测器的图像盲鉴别算法
Blind Image Identification Algorithm Based on HSV Quantized Color Feature and SURF Detector
计算机科学, 2019, 46(11A): 268-272.
[4] 海沫,张游.
Spark平台下聚类算法的性能比较
Performance Comparison of Clustering Algorithms in Spark
计算机科学, 2017, 44(Z6): 414-418. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.093
[5] 王宏杰,师彦文.
结合初始中心优化和特征加权的K-Means聚类算法
K-Means Clustering Algorithm Based on Initial Center Optimization and Feature Weighted
计算机科学, 2017, 44(Z11): 457-459. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.097
[6] 李卫疆,王真真,余正涛.
基于BTM和K-means的微博话题检测
Micro-blog Topic Detection Method Integrating BTM Topic Model and K-means Clustering
计算机科学, 2017, 44(2): 257-261. https://doi.org/10.11896/j.issn.1002-137X.2017.02.042
[7] 海沫.
大数据聚类算法综述
Survey of Clustering Algorithms for Big Data
计算机科学, 2016, 43(Z6): 380-383. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.090
[8] 张凤荔,周洪川,张俊娇,刘渊,张春瑞.
零知识下的比特流未知协议分类模型
Unknown Bit-stream Protocol Classification Model with Zero-knowledge
计算机科学, 2016, 43(8): 39-44. https://doi.org/10.11896/j.issn.1002-137X.2016.08.008
[9] 李孟杰,谢强,丁秋林.
基于正交非负矩阵分解的K-means聚类算法研究
Orthogonal Non-negative Matrix Factorization for K-means Clustering
计算机科学, 2016, 43(5): 204-208. https://doi.org/10.11896/j.issn.1002-137X.2016.05.037
[10] 杨 军,田振华,李龙杰,王小鹏.
基于网格Laplace的三维几何模型分割
Segmentation of 3D Geometric Models Based on Mesh Laplace
计算机科学, 2015, 42(5): 295-299. https://doi.org/10.11896/j.issn.1002-137X.2015.05.060
[11] 王 龙,王嘉伦,程转丽,李 然,张 引.
基于张量分解的药品个性化推荐
Personalized Medicine Recommendation Based on Tensor Decomposition
计算机科学, 2015, 42(5): 225-229. https://doi.org/10.11896/j.issn.1002-137X.2015.05.045
[12] 吕明磊,刘冬梅,曾智勇.
一种改进的K-means聚类算法的图像检索方法
Novel Image Retrieval Method of Improved K-means Clustering Algorithm
计算机科学, 2013, 40(8): 285-288.
[13] .
基于混合并行遗传聚类的文本特征抽取方法研究

计算机科学, 2008, 35(9): 183-186.
[14] .
基于邻域模型的K-means初始聚类中心选择算法

计算机科学, 2008, 35(11): 181-184.
[15] .
基于小生境混合遗传算法的文本特征词聚类研究

计算机科学, 2008, 35(1): 202-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!