计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 114-120.doi: 10.11896/j.issn.1002-137X.2018.02.020

• 2017年中国计算机学会人工智能会议 • 上一篇    下一篇

基于次优区间卡尔曼滤波的机器鱼跟踪方法

童晓红,唐超   

  1. 合肥职业技术学院信息中心 合肥238000,合肥学院计算机科学与技术系 合肥230601
  • 出版日期:2018-02-15 发布日期:2018-11-13
  • 基金资助:
    本文受安徽省高校自然科学研究项目(KJ2014A219,KJ2015A206)资助

Robotic Fish Tracking Method Based on Suboptimal Interval Kalman Filter

TONG Xiao-hong and TANG Chao   

  • Online:2018-02-15 Published:2018-11-13

摘要: 目前,自主水下航行器(Autonomous Underwater Vehicle,AUV)研究的重点集中在跟踪定位、精确制导和返坞等领域。机器鱼已成为AUV在智能教育、民用与军事等方面的应用热点。从非线性跟踪分析中发现,区间卡尔曼滤波算法虽然包含了一切可能的滤波结果,但范围比较宽,也比较保守,而且区间数据向量在实现之前是不确定的。文中提出了一种次优区间卡尔曼滤波优化算法。次优区间卡尔曼滤波方案用区间矩阵的逆 代替 其最坏逆,比标准区间卡尔曼滤波更逼近状态方程和测量方程的非线性过程,提高了标称动态系统模型的精确度,改善了跟踪系统的速度与精度。蒙特卡洛仿真实验结果表明,次优区间卡尔曼滤波算法的最优轨迹优于区间卡尔曼滤波方法及标准的卡尔曼滤波方法。

关键词: 自动水下航行器,卡尔曼滤波,次优区间卡尔曼滤波,机器鱼跟踪,蒙特卡洛仿真

Abstract: Research of autonomous underwater vehicle (AUV) focuses on tracking and positioning,precise guidance and return to dock,and so on.The robotic fish of AUV has become a hot application in intelligent education,civil and military and so on.From the nonlinear tracking analysis of robotic fish,it is found that the interval Calman filtering algorithm contains all possible filtering results,but the range is wide and relatively conservative,and the interval data vector is uncertain before implementation.This paper proposed a ptimization algorithm of suboptimal interval Kalman filtering.Suboptimal interval Kalman filtering scheme uses the inverse of interval matrix instead of its worst inverse,and it is more approximate to nonlinear state equation and measurement equation than the standard interval Kalman filter,increasing the accuracy of the nominal dynamic system model,and improving the speed and precision of tracking system.Monte-Carlo simulation results show that the optimal trajectory of suboptimal interval Kalman filtering algorithm is better than that of the interval Kalman filtering method and the standard filter method.

Key words: Autonomous underwater vehicle,Kalman filter,Suboptimal interval Kalman filter,Robotic fish tracking,Monte-Carlo simulation

[1] SHOJAEI K,DOLATSHHI l K.Line-of-sight target tracking control of underactuated autonomous underwater vehicles[J].Ocean Engineering,2017,133:244-252.
[2] KOCA G O,KORKMAZ D,BAL C,et al.Implementations of the route planning scenarios for the autonomous robotic fish with the optimized propulsion mechanism[J].Measurement,2016,93:232-242.
[3] SUEBSAIPROM P,LIN C L,ENGKAINAN A.Undulatory locomotion and effective propulsion for fish-inspired robot[J].Control Engineering Practice,2017,58:66-77.
[4] propulsion P,LIN C L.Maneuverability modeling and trajectory tracking for fish robot[J].Control Engineering Practice,2015,45:22-36.
[5] KENNEDY H L.Mixture reduction techniques and probabilistic intensity models for multiple hypothesis tracking of targets in clutter [J].Computers & Electrical Engineering,2014,40(3):884-896.
[6] JIANG X,HARISHAN K,THARMARASA R,et al.Integrated track initialization and maintenance in heavy clutter using probabilistic data association[J].Signal Processing,2014,94(1):241-250.
[7] NGATINI,APRILIANI E,NURHADI H.Ensemble and Fuzzy Kalman Filter for Position Estimation of an Autonomous Underwater Vehicle Based on Dynamical System of AUV Motion[J].Expert Systems with Applications,2016,68:29-35.
[8] SENANAYAKE M,SENTHOORAN I,BARCA J C,et al.Search and tracking algorithms for swarms of robots[J].Roboti-cs & Autonomous Systems,2016,75(PB):422-434.
[9] YADAV A K,MISHRA V K,SINGH A K,et al.Unscented Kalman Filter For Arbitrary Step Randomly Delayed Measurements[C]∥Indian Control Conference.2017.
[10] BELIK B V,BELOV S G.Using of Extended Kalman Filter for Mobile Target Tracking in the Passive Air Based Radar System [J].Procedia Computer Science,2017,103:280-286.
[11] ARTHUR J,ATTARIAN A,HAMILTON F,et al.Nonlinear Kalman Filtering for Censored Observations[J].arXiv:1702.03967.
[12] DUAN J M,LIU D,YU H X,et al.An Improved FastSLAM Algorithm for Autonomous Vehicle Based on the Strong Trac-king Square Root Central Difference Kalman Filter[C]∥International Conference on Intelligent Transportation Systems.IEEE,2015:693-698.
[13] MIAO Z Y,LV Y L,XU D J,et al.Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions[J].Gps Solutions,2017,21(1):111-122.
[14] LI D,JJ D,JIAN L,et al.A Multi-model EKF Integrated Navigation Algorithm for Deep Water AUV[J].International Journal of Advanced Robotic Systems,2016,13:1.
[15] SEN D,ERAZO K,NAGARAJAIAH S.Bayesian estimation of acoustic emissions source in plate structures using particle-based stochastic filtering[J].Structural Control and Health Monitoring,2017:e2005.
[16] SIOURIS G M,CHEN G,WANG J.Tracking an incoming ballistic missile using an extended interval Kalman filter[J].IEEE Transactions on Aerospace & Electronic Systems,1997,33(1):232-240.
[17] MOTWANI A,SHARMA S K,CULVERHOUSE R S P.Interval Kalman Filtering in Navigation System Design for an Uninhabited Surface Vehicle[J].Journal of Navigation,2013,66(5):639-652.
[18] CLARK D,RUIZ I T,PETILLOT Y,et al.Particle PHD filter multiple target tracking in sonar image[J].IEEE Transactions on Aerospace & Electronic Systems,2007,43(1):409-416.
[19] MA T,ZHAO X Z,GAO B Q,et al.Combined shape and topology optimization of free-form structure[J].Journal of Zhejiang University (Engineering Edition),2015,49(10):1946-1951.(in Chinese) 马腾,赵兴忠,高博青,等.自由曲面形状和拓扑联合优化研究[J].浙江大学学报(工学版),2015,9(10):1946-1951.
[20] XIANG X,YU C,ZHANG Q.Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties[J].Computers & Operations Research,2016,84:165-177.
[21] SUEBSAIPROM P,LIN C L.Maneuverability modeling andtrajectory tracking for fish robot[J].Control Engineering Practice,2015,45:22-36.
[22] CRASTA N,BAYAT M,AGUIAR A P,et al.Observabilityanalysis of 3D AUV trimming trajectories in the presence of ocean currents using range and depth measurements[J].Annual Reviews in Control,2015,40:142-156.
[23] CONTI R,FANELLI F,MELI E,et al.A free floating manipulation strategy for Autonomous Underwater Vehicles[J].Robotics & Autonomous Systems,2016,87:133-146.
[24] JHANG J,ZHOU J,LU X B.Flocking Analysis and Comparison in Simplex Multi-Agent Systems under Matrix-Weighting Hlder Norms[J].Ifac Papersonline,2015,48(28):438-443.
[25] DING F,WANG X,MAO L,et al.Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering [J].Digital Signal Processing,2017,62:211-223.
[26] WIERINGEN W N V.On the mean squared error of the ridge estimator of the covariance and precision matrix[J].Statistics & Probability Letters,2017,123:88-92.
[27] CHEN C Y,CEHN C H,CHEN C H,et al.An automatic filtering convergence method for iterative impulse noise filters based on PSNR checking and filtered pixels detection[J].Expert Systems with Applications,2016,63:198-207.
[28] HE Y,HE Z,LEE D H,et al.Robust fuzzy programming me-thod for MRO problems considering location effect,dispersion effect and model uncertainty[J].Computers & Industrial Engineering,2017,105:76-83.
[29] ALLOTTA B,CAITI A,CHISCI L,et al.An unscented Kalman filter based navigation algorithm for autonomous underwatervehicles[J].Mechatronics,2016,39:185-195.
[30] FORNBERG B.Fast calculation of Laurent expansions for matrix inverses[J].Journal of Computational Physics,2016,326:722-732.
[31] OU H F,ZHANG B,ZHAO S J.Monte Carlo simulation for calculation of fragments produced by 400 MeV/u carbon ion beam in water[J].Nuclear Inst.and Methods in Physics Research,2017,396:18-25.
[32] DEGRD ,SRENSEN A J,HANSEN R E,et al.A new method for underwater archaeological surveying using sensors and unmanned platforms[J].IFAC-PapersOnLine,2016,49(23):486-493.
[33] ZHENG W,ZOU Q M,NI W X.Design and Application of Underwater Unmanned Vehicle Simulation System for Navigation and Obstacle Avoidance[J].Journal of System Simulation,2016,8(1):91-98.(in Chinese) 郑为,邹启明,倪文玺.水下无人潜航器避障与导航仿真系统设计与应用[J].系统仿真学报,2016,8(1):91-98.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!