计算机科学 ›› 2018, Vol. 45 ›› Issue (5): 228-231.doi: 10.11896/j.issn.1002-137X.2018.05.039

• 图形图像与模式识别 • 上一篇    下一篇

基于视觉约束能量最小化的特征点匹配算法

刘朝霞,邵峰,景雨,祁瑞华   

  1. 大连外国语大学软件学院 辽宁 大连116044,大连海事大学信息科学技术学院 辽宁 大连116026,大连外国语大学软件学院 辽宁 大连116044,大连外国语大学软件学院 辽宁 大连116044
  • 出版日期:2018-05-15 发布日期:2018-07-25
  • 基金资助:
    本文受国家自然科学基金青年科学基金项目(61201454,2),大连外国语大学创新团队资助

Feature Matching Algorithm Based on Visual Feature Constrained Energy Minimization

LIU Zhao-xia, SHAO Feng, JING Yu and QI Rui-hua   

  • Online:2018-05-15 Published:2018-07-25

摘要: 为了解决海上目标航空遥感图像重复特征较多导致的匹配不一致问题,并简化匹配过程,文中提出了基于SIFT视觉约束能量最小化的匹配算法(CEM-SIFT)。该算法将约束能量最小化模型应用于特征点的匹配,通过构造有限脉冲响应线性滤波器,采用视觉信息计算其能量值,使得待匹配的点集经过滤波之后的平均输出能量在一定约束下达到最小值,最终实现含重复信息的特征精确匹配。采用10组航空遥感海冰图像对算法进行测试,结果表明,相对于采用SIFT欧氏距离(ED-SIFT),在匹配重复特征比较多、点集规模比较大的图像时,CEM-SIFT算法的匹配精度更高,能够达到100%。

关键词: 特征匹配,SIFT,约束能量最小化,视觉特征

Abstract: The aerial remote sensing image captured on the sea has the characteristics of monotonous and similar patterns,which may result in mismatches in feature matching.In order to remove the mismatches and simplify the matching process,a novel feature matching algorithm based on the constrained energy minimization of SIFT feature(CEM-SIFT) was proposed.In the algorithm,a finite-impulse response filter is designed and visual information is used to compute the output energy.In the constraints imposed by desired signature,the filter output energy is minimized.Ten pairs of seaice aerial images were utilized to evaluate the performance.The experimental results show that the proposed algorithm CEM-SIFT is more accurate than the euclidean distance of SIFT feature(ED-SIFT) when matching an image with many repetitive features and large point set scale.

Key words: Feature matching,SIFT,Constrained energy minimization(CEM),Visual feature

[1] 刘朝霞,安居白,邵峰.航空遥感图像配准技术[M].北京:科学出版社,2014.
[2] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,0(2):91-110.
[3] VAN DE SANDE K E A,GEVERS T,SNOEK C G M.Evaluating color descriptors for object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(9):1582-1596.
[4] FISHIER M A,BOLES R C.Random sample concensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communication of ACM,1981,4(6):381-395.
[5] BESL P,MCKAY N.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
[6] LI Y,TSIN Y,GENC Y, et al.Object detection using 2D spatial ordering constraints[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005:711-718.
[7] MYRONENKO A,SONG X.Point-set registration:coherent point drift[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,2(12):2262-2275.
[8] AGUILAR W,FRAUEL Y,ESCOLANO F,et al.A robust graph transformation matching for non-rigid registration[J].Image and Vision Computing,2009,27(7):897-910.
[9] XIONG Z,ZHANG Y.A novel interest-point-matching algorithm for high-resolution satellite images[J].IEEE Transactions on Geoscience & Remote Sensing,2009,47(12):4189-4200.
[10] CAETANO T S,MCAULEY J J,CHENG L,et al.Learninggraph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,1(6):1048-1058.
[11] ZHANG K,LI X,ZHANG J.A robust point-matching algorithm for remote sensing image registration[J].IEEE Geo-science & Remote Sensing Letters,2014,1(2):469-473.
[12] MA J,ZHOU H,ZHAO J,et al.Robust feature matching for remote sensing image registration via locally linear transforming[J].IEEE Transactions Geoscience & Remote Sensing,2015,3(12):6469-6481.
[13] ZHAO M,AN B,WU Y,et al.A robust delaunay triangulation matching for multispectral/multidate remote sensing image regi-stration[J].IEEE Geoscience & Remote Sensing Letters,2015,12(4):711-715.
[14] LIU Z X,SHAO F,JING Y,et al.Application of graph structure in aerial image feature matching[J].Computer Engineering and Application,2018,4(1):19-24.(in Chinese) 刘朝霞,邵峰,景雨,等.图结构在航空遥感图像特征点匹配中的应用[J].计算机工程与应用,2018,4(1):19-24.
[15] PAUL S,PATI U C.Remote Sensing Optical Image RegistrationUsing Modified Uniform Robust SIFT[J].IEEE Geoscience & Remote Sensing Letters,2016,3(9):1300-1304.
[16] MA W,WEN Z,WU Y,et al.Remote Sensing Image Registration with Modified SIFT and Enhanced Feature Matching[J].IEEE Geoscience & Remote Sensing Letters,2017,4(1):3-7.
[17] AL-KHAFAJI S L,ZHOU J,ZIA A,et al.Spectral-Spatial Scale Invariant FeatureTransform for Hyperspectral Images[J].IEEE Transactions on Image Processing,2018,7(2):837-850.
[18] HARSANYI J C.Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D].Baltimore:University of Maryland Baltimore County,1993.
[19] DU Q,REN H,CHANG C.A comparative study for orthogonal subspace projection and constrained energy minimization[J].IEEE Transactions on Geoscience & Remote Sensing,2003,41(6):1525-1529.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!