计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 174-178.
霍敏霞,薛博桓
UO Min-xia,XUE Bo-huan
摘要: 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。随着科技的发展,破碎文件的自动拼接技术以及拼接复原效率是目前研究的热点问题。对于单一方向的破碎文件,文中采用0-1匹配、Pearson相关系数的灰度匹配,针对破碎文件的长短、多少,以及中英文等情况建立了两种模型;对于横切和纵切方向的破碎文件,采用聚类分析和灰度匹配建立模型并进行相应处理,从而实现对这些破碎文件的全自动或半自动拼接复原。
中图分类号:
[1]贾海燕.碎纸自动拼接关键技术研究[D].长沙:国防科学技术大学,2005. [2]张桂华,冯艳波,陆卫东.图像处理的灰度化及特征区域的获取[J].齐齐哈尔大学学报(自然科学版),2007,23(4):49-52. [3]SVOBODA T,KYBIC J,HLAVAC V.Image Processing,Ana- lysis & and Machine Vision- A MATLAB Companion[M].Thomson Learning,2007. [4]乔杰忠,吴中雷.基于灰度匹配算法在图像处理中的研究[J].装备制造技术,2009(10):42-43. [5]YANG N,JI D G,LI S Q.The Application of Pearson Correlational Analysis Method in Air Quality Analysis of Beijing-Tianjin-Hebei Region[J].Agricultural Science & Technology,2015(3):590-592. [6]胡雷芳.五种常用系统聚类分析方法及其比较[J].统计科学与实践,2007(4):11-13. [7]卢健.少量人工干预的碎纸片拼接[J].自动化与仪器仪表,2015(10):51-53. [8]贾里德P·兰德.R语言[M].北京:机械工业出版,2015. |
[1] | 肖蕾, 陈荣赏, 缪淮扣, 洪煜. 融合聚类算法和缺陷预测的测试用例优先排序方法 Test Case Prioritization Combining Clustering Approach and Fault Prediction 计算机科学, 2021, 48(5): 99-108. https://doi.org/10.11896/jsjkx.200400100 |
[2] | 曹素娥, 杨泽民. 基于聚类分析算法和优化支持向量机的无线网络流量预测 Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine 计算机科学, 2020, 47(8): 319-322. https://doi.org/10.11896/jsjkx.190800075 |
[3] | 高玉潼, 雷为民, 原玥. 复杂环境下基于聚类分析的人脸目标识别 Face Recognition Based on Cluster Analysis in Complex Environment 计算机科学, 2020, 47(7): 111-117. https://doi.org/10.11896/jsjkx.190500004 |
[4] | 黄海燕, 刘晓明, 孙华勇, 杨志才. 聚类分析算法在不确定性决策中的应用 Application of Clustering Analysis Algorithm in Uncertainty Decision Making 计算机科学, 2019, 46(6A): 593-597. |
[5] | 郝俊生,李冰锋,陈曦,高文娟. 基于Android平台的高校网络订餐系统的设计与实现 Design and Implementation of Network Subscription System Based on Android Platform 计算机科学, 2018, 45(6A): 591-594. |
[6] | 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案 Path Optimization Scheme for Restraining Degree of Disorder in CMT 计算机科学, 2018, 45(4): 122-125. https://doi.org/10.11896/j.issn.1002-137X.2018.04.019 |
[7] | 陈淑鑫,孙伟民,王丽丽. 网格聚类分析天文光谱数据 Analysis of Astronomical Spectral Data Based on Grid Clustering 计算机科学, 2017, 44(Z11): 453-456. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.096 |
[8] | 夏庆亚. 基于密度峰值和网格的自动选定聚类中心算法 Automatically Selecting Clustering Centers Algorithm Based on Density Peak and Grid 计算机科学, 2017, 44(Z11): 403-406. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.085 |
[9] | 于明秋,周创明,赵敏. 基于聚类分析的抗时延抖动时隙分配算法 De-jitter Dynamic Slot Allocation Algorithm Based on Cluster Analysis 计算机科学, 2017, 44(7): 94-97. https://doi.org/10.11896/j.issn.1002-137X.2017.07.017 |
[10] | 孙善武,王楠,欧阳丹彤. 基于聚类分析的业务流程模型抽象 Business Process Model Abstraction Based on Cluster Analysis 计算机科学, 2016, 43(5): 193-197. https://doi.org/10.11896/j.issn.1002-137X.2016.05.035 |
[11] | 张恒巍,何嘉婧,韩继红,王晋东. 基于智能优化算法的模糊软子空间聚类方法 Fuzzy Soft Subspace Clustering Method Based on Intelligent Optimization Algorithm 计算机科学, 2016, 43(3): 256-261. https://doi.org/10.11896/j.issn.1002-137X.2016.03.047 |
[12] | 庞天杰,赵兴旺. 一种基于先验信息的混合数据聚类个数确定算法 Algorithm to Determine Number of Clusters for Mixed Data Based on Prior Information 计算机科学, 2016, 43(2): 101-104. https://doi.org/10.11896/j.issn.1002-137X.2016.02.023 |
[13] | 张浩,何杰,李慧宗. 基于改进鱼群算法与张量分解的社会化标签推荐模型 Social Tagging Recommendation Model Based on Improved Artificial Fish Swarm Algorithm and Tensor Decomposition 计算机科学, 2016, 43(12): 168-172. https://doi.org/10.11896/j.issn.1002-137X.2016.12.030 |
[14] | 陈云风,王红军,杨燕. 基于聚类集成的高铁故障诊断分析 Fault Diagnosis of High-speed Rail Based on Clustering Ensemble 计算机科学, 2015, 42(6): 233-238. https://doi.org/10.11896/j.issn.1002-137X.2015.06.049 |
[15] | 方 玲,陈松灿. 基于特征偏好的聚类研究 Research on Clustering with Feature Preferences 计算机科学, 2015, 42(5): 57-61. https://doi.org/10.11896/j.issn.1002-137X.2015.05.012 |
|