计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 174-178.

• 模式识别与图像处理 • 上一篇    下一篇

基于智能算法的破碎文件拼接复原技术的研究

霍敏霞,薛博桓   

  1. 重庆邮电大学移通学院计算机科学系 重庆401520
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:霍敏霞(1983-),女,硕士生,讲师,主要研究方向为软件测试、图像处理,E-mail:hmx2971@126.com;薛博桓(1993-),男,主要研究方向为即时定位与地图构建。

Research on Splicing Recovery of Broken Files Based on Intelligent Algorithms
H

UO Min-xia,XUE Bo-huan   

  1. Department of Computer Science,College of Mobile Telecommunication,Chongqing University of Posts and Telecommunications,Chongqing 401520,China
  • Online:2018-06-20 Published:2018-08-03

摘要: 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。随着科技的发展,破碎文件的自动拼接技术以及拼接复原效率是目前研究的热点问题。对于单一方向的破碎文件,文中采用0-1匹配、Pearson相关系数的灰度匹配,针对破碎文件的长短、多少,以及中英文等情况建立了两种模型;对于横切和纵切方向的破碎文件,采用聚类分析和灰度匹配建立模型并进行相应处理,从而实现对这些破碎文件的全自动或半自动拼接复原。

关键词: 0-1匹配, 灰度匹配, 聚类分析, 拼接复原, 破碎文件

Abstract: The technique of the splicing of broken files in the areas of recovering judicial evidence and historical documents and acquiring military intelligence has an important application.With the development of science and technology,the technique of automatic splicing for broken files is now a hot researching spot.As for unidirectional broken files,the technique in this paper was to build two kind of models based on the length and size of broken files and the condition of the usage of English and Chinese,with matching 0-1 and Pearson related coefficient gray matching.As for broken files in transverse direction or longitudinal direction,the technique in this paper was to build models and perform relevant processing,with the way of cluster analysis and gray matching to realize the full-automatic and semi-automatic recovery of those broken files.

Key words: 0-1 matching, Broken files, Clustering analysis, Gray matching, Splicing recovery

中图分类号: 

  • TP391
[1]贾海燕.碎纸自动拼接关键技术研究[D].长沙:国防科学技术大学,2005.
[2]张桂华,冯艳波,陆卫东.图像处理的灰度化及特征区域的获取[J].齐齐哈尔大学学报(自然科学版),2007,23(4):49-52.
[3]SVOBODA T,KYBIC J,HLAVAC V.Image Processing,Ana- lysis & and Machine Vision- A MATLAB Companion[M].Thomson Learning,2007.
[4]乔杰忠,吴中雷.基于灰度匹配算法在图像处理中的研究[J].装备制造技术,2009(10):42-43.
[5]YANG N,JI D G,LI S Q.The Application of Pearson Correlational Analysis Method in Air Quality Analysis of Beijing-Tianjin-Hebei Region[J].Agricultural Science & Technology,2015(3):590-592.
[6]胡雷芳.五种常用系统聚类分析方法及其比较[J].统计科学与实践,2007(4):11-13.
[7]卢健.少量人工干预的碎纸片拼接[J].自动化与仪器仪表,2015(10):51-53.
[8]贾里德P·兰德.R语言[M].北京:机械工业出版,2015.
[1] 肖蕾, 陈荣赏, 缪淮扣, 洪煜.
融合聚类算法和缺陷预测的测试用例优先排序方法
Test Case Prioritization Combining Clustering Approach and Fault Prediction
计算机科学, 2021, 48(5): 99-108. https://doi.org/10.11896/jsjkx.200400100
[2] 曹素娥, 杨泽民.
基于聚类分析算法和优化支持向量机的无线网络流量预测
Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine
计算机科学, 2020, 47(8): 319-322. https://doi.org/10.11896/jsjkx.190800075
[3] 高玉潼, 雷为民, 原玥.
复杂环境下基于聚类分析的人脸目标识别
Face Recognition Based on Cluster Analysis in Complex Environment
计算机科学, 2020, 47(7): 111-117. https://doi.org/10.11896/jsjkx.190500004
[4] 黄海燕, 刘晓明, 孙华勇, 杨志才.
聚类分析算法在不确定性决策中的应用
Application of Clustering Analysis Algorithm in Uncertainty Decision Making
计算机科学, 2019, 46(6A): 593-597.
[5] 郝俊生,李冰锋,陈曦,高文娟.
基于Android平台的高校网络订餐系统的设计与实现
Design and Implementation of Network Subscription System Based on Android Platform
计算机科学, 2018, 45(6A): 591-594.
[6] 王振朝,侯欢欢,连蕊.
抑制CMT中乱序程度的路径优化方案
Path Optimization Scheme for Restraining Degree of Disorder in CMT
计算机科学, 2018, 45(4): 122-125. https://doi.org/10.11896/j.issn.1002-137X.2018.04.019
[7] 陈淑鑫,孙伟民,王丽丽.
网格聚类分析天文光谱数据
Analysis of Astronomical Spectral Data Based on Grid Clustering
计算机科学, 2017, 44(Z11): 453-456. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.096
[8] 夏庆亚.
基于密度峰值和网格的自动选定聚类中心算法
Automatically Selecting Clustering Centers Algorithm Based on Density Peak and Grid
计算机科学, 2017, 44(Z11): 403-406. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.085
[9] 于明秋,周创明,赵敏.
基于聚类分析的抗时延抖动时隙分配算法
De-jitter Dynamic Slot Allocation Algorithm Based on Cluster Analysis
计算机科学, 2017, 44(7): 94-97. https://doi.org/10.11896/j.issn.1002-137X.2017.07.017
[10] 孙善武,王楠,欧阳丹彤.
基于聚类分析的业务流程模型抽象
Business Process Model Abstraction Based on Cluster Analysis
计算机科学, 2016, 43(5): 193-197. https://doi.org/10.11896/j.issn.1002-137X.2016.05.035
[11] 张恒巍,何嘉婧,韩继红,王晋东.
基于智能优化算法的模糊软子空间聚类方法
Fuzzy Soft Subspace Clustering Method Based on Intelligent Optimization Algorithm
计算机科学, 2016, 43(3): 256-261. https://doi.org/10.11896/j.issn.1002-137X.2016.03.047
[12] 庞天杰,赵兴旺.
一种基于先验信息的混合数据聚类个数确定算法
Algorithm to Determine Number of Clusters for Mixed Data Based on Prior Information
计算机科学, 2016, 43(2): 101-104. https://doi.org/10.11896/j.issn.1002-137X.2016.02.023
[13] 张浩,何杰,李慧宗.
基于改进鱼群算法与张量分解的社会化标签推荐模型
Social Tagging Recommendation Model Based on Improved Artificial Fish Swarm Algorithm and Tensor Decomposition
计算机科学, 2016, 43(12): 168-172. https://doi.org/10.11896/j.issn.1002-137X.2016.12.030
[14] 陈云风,王红军,杨燕.
基于聚类集成的高铁故障诊断分析
Fault Diagnosis of High-speed Rail Based on Clustering Ensemble
计算机科学, 2015, 42(6): 233-238. https://doi.org/10.11896/j.issn.1002-137X.2015.06.049
[15] 方 玲,陈松灿.
基于特征偏好的聚类研究
Research on Clustering with Feature Preferences
计算机科学, 2015, 42(5): 57-61. https://doi.org/10.11896/j.issn.1002-137X.2015.05.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!