计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 1-7.doi: 10.11896/j.issn.1002-137X.2019.04.001
• 大数据与数据科学 • 下一篇
郭威1, 于建江1, 汤克明1, 徐涛2
GUO Wei1, YU Jian-jiang1, TANG Ke-ming1, XU Tao2
摘要: 动态数据流分析是一个具有广泛应用价值的研究课题,在线学习方法是其中的一种关键技术。在众多在线学习方法中,在线贯序超限学习机(Online Sequential Extreme Learning Machine,OSELM)是一种新颖且实用的在线学习算法,目前已在动态数据流分析中得到了成功应用。首先,介绍了OSELM的理论基础和算法执行过程;然后,以动态数据流分析为应用背景,对各种改进OSELM算法进行了分类综述,包括基于滑动窗口的OSELM、基于遗忘因子的OSELM、基于样本加权的OSELM以及其他方法,重点论述了各类算法的设计思路和实现策略,并对其优缺点进行了比较和分析;最后,探讨了值得进一步研究的问题。
中图分类号:
[1]OLORUNNIMBE M K,VIKTOR H L,PAQUET E.Dynamic adaptation of online ensembles for drifting data streams[J].Journal of Intelligent Information Systems,2018,50(2):291-313. [2]MEJRI D,LIMAM M,WEIHS C.A new dynamic weighted majority control chart for data streams[J].Soft Computing,2018,22(2):511-522. [3]MENCAGLI G,TORQUATI M,DANELUTTO M.Elastic- PPQ:A two-level autonomic system for spatial preference query processing over dynamic data streams[J].Future Generation Computer Systems,2018,79(3):862-877. [4]MOHAMAD S,BOUCHACHIA A,SAYEDMOUCHAWEH M.A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams[J].IEEE Transactions on Neural Networks & Lear-ning Systems,2018,29(1):74-86. [5]KHAMASSI I,SAYED-MOUCHAWEH M,HAMMAMI M,et al.Discussion and review on evolving data streams and concept drift adapting[J].Evolving Systems,2018,9(1):1-23. [6]LI C,WEI F,DONG W,et al.Dynamic Structure Embedded Online Multiple-Output Regression for Streaming Data[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2018,doi:10.1109/TPAMI.2018.2794446. [7]LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-23. [8]HUANG G B,ZHU Q Y,SIEW C K.Extreme learning ma- chine:Theory and applications[J].Neurocomputing,2006,70(1):489-501. [9]HUYNH H T,WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters,2011,32(14):1930-1935. [10]HUANG S,WANG B,QIU J,et al.Parallel ensemble of online sequential extreme learning machine based on MapReduce[J].Neurocomputing,2016,174:352-367. [11]SCARDAPANE S,COMMINIELLO D,SCARPINITI M,et al.Online Sequential Extreme Learning Machine With Kernels[J].IEEE Transactions on Neural Networks & Learning Systems,2015,26(9):2214-2220. [12]JIA X,WANG R,LIU J,et al.A semi-supervised online sequential extreme learning machine method[J].Neurocomputing,2016,174:168-178. [13]WONG P K,XIANG H G,WONG K I,et al.Online extreme learning machine based modeling and optimization for point-by-point engine calibration[J].Neurocomputing,2018,277:187-197. [14]OUYANG J Q,ZHOU Y,TANG H R.A Meteorological Predication Model Based on Storm and Online Sequential Extreme Learning Machine[J].Journal of Computer Research & Deve-lopment,2017,54(8):1736-1743.(in Chinese) 欧阳建权,周勇,唐欢容.基于Storm的在线序列极限学习机的气象预测模型[J].计算机研究与发展,2017,54(8):1736-1743. [15]ZHOU X,LIU Z,ZHU C.Online Regularized and Kernelized Extreme Learning Machines with Forgetting Mechanism[J].Mathematical Problems in Engineering,2014,2014:1-11. [16]ZHOU X,WANG C.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing,2016,174:1147-1155. [17]ZHANG H,ZHANG S,YIN Y.Kernel online sequential ELM algorithm with sliding window subject to time-varying environments[J].Memetic Computing,2016,10(1):43-52. [18]WANG X,HAN M.Online sequential extreme learning machine with kernels for nonstationary time series prediction[J].Neurocomputing,2014,145:90-97. [19]ZHANG X,WANG H L.Fixed-memory extreme learning machine and its applications[J].Control and Decision,2012,27(8):1206-1210.(in Chinese) 张弦,王宏力.限定记忆极端学习机及其应用[J].控制与决策,2012,27(8):1206-1210. [20]ZHAO J,WANG Z,PARK D S.Online sequential extreme learning machine with forgetting mechanism[J].Neurocompu-ting,2012,87:79-89. [21]WANG J,RAN R,ZHOU Y.A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm[J].Applied Sciences,2017,7(4):423. [22]XIAO D,LI B,ZHANG S.An online sequential multiple hidden layers extreme learning machine method with forgetting mechanism[J].Chemometrics and Intelligent Laboratory Systems,2018,176:126-133. [23]MIRZA B,LIN Z.Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification[J].Neural Networks,2016,80:79-94. [24]ZHANG X,WANG H L.Selective forgetting extreme learning machine and its application to time series prediction[J].Acta Physica Sinica,2011,60(8):68-74.(in Chinese) 张弦,王宏力.具有选择与遗忘机制的极端学习机在时间序列预测中的应用[J].物理学报,2011,60(8):68-74. [25]LU J,HUANG J,LU F.Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle[J].Energies,2017,10(1):1-15. [26]TIAN Z,WANG G,REN Y,et al.An Adaptive Online Sequential Extreme Learning Machine for Short-Term Wind Speed Prediction Based on Improved Artificial Bee Colony Algorithm[J].Neural Network World,2018,28(3):191-212. [27]GUO W,XU T,TANG K M,et al.Online sequential extreme learning machine with generalized regularization and forgetting mechanism[J].Control & Decision,2017,32(2):247-254.(in Chinese) 郭威,徐涛,汤克明,等.具有广义正则化与遗忘机制的在线贯序超限学习机[J].控制与决策,2017,32(2):247-254. [28]DU Z L,LI X M,ZHENG Z G,et al.Extreme learning machine based on regularization and forgetting factor and its application in fault prediction[J].Chinese Journal of Scientific Instrument,2015,36(7):1546-1553.(in Chinese) 杜占龙,李小民,郑宗贵,等.基于正则化与遗忘因子的极限学习机及其在故障预测中的应用[J].仪器仪表学报,2015,36(7):1546-1553. [29]WU Z,TANG H,HE S,et al.Fast dynamic hysteresis modeling using a regularized online sequential extreme learning machine with forgetting property[J].The International Journal of Advanced Manufacturing Technology,2018,94:3473-3484. [30]ZHANG H,ZHANG S,YIN Y.Online sequential ELM algo- rithm with forgetting factor for real applications[J].Neurocomputing,2017,261:144-152. [31]LIU D,WU Y,JIANG H.FP-ELM:An online sequential lear- ning algorithm for dealing with concept drift[J].Neurocompu-ting,2016,207:322-334. [32]LI Y,ZHANG S,YIN Y,et al.A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces[J].Sensors,2017,17(8):1847. [33]LU J,HUANG J,LU F.Time Series Prediction Based on Adaptive Weight Online Sequential Extreme Learning Machine[J].Applied Sciences,2017,7(3):217. [34]GUO W,XU T,YU J J,et al.Online Sequential Extreme Lear- ning Machine Based on M-estimator and Variable Forgetting Factor[J].Journal of Electronics & Information Technology,2018,40(6):1360-1367.(in Chinese) 郭威,徐涛,于建江,等.基于M-estimator与可变遗忘因子的在线贯序超限学习机[J].电子与信息学报,2018,40(6):1360-1367. [35]SOARES S G,ARA JO R.An adaptive ensemble of online Extreme Learning Machines with variable forgetting factor for dynamic system prediction[J].Neurocomputing,2016,171:693-707. [36]LIMJS,LEES K,PANGH S,et al.Low complexity adaptive forgetting factor for online sequential extremelearning machine (OS-ELM) for application to nonstationary systemestimations[J].Neural Computing & Applications,2013,22(3-4):569-576. [37]LIU J.Adaptive forgetting factor OS-ELM and bootstrap for time series prediction[J].International Journal of Modeling Simulation & Scientific Computing,2017,8(3):1-19. [38]GUO W,XU T,TANG K,et al.Online Sequential Extreme Learning Machine with Generalized Regularization and Adaptive Forgetting Factor for Time-Varying System Prediction[J].Mathematical Problems in Engineering,2018,2018:1-22. [39]ZOU Q Y,WANG X J,ZHOU C J,et al.The memory degradation based online sequential extreme learning machine[J].Neurocomputing,2018,275:2864-2879. [40]GU Y,LIU J,CHEN Y,et al.TOSELM:Timeliness Online Sequential Extreme Learning Machine[J].Neurocomputing,2014,128:119-127. [41]LUO X,YANG X,JIANG C,et al.Timeliness online regularized extreme learning machine[J].International Journal of Machine Learning and Cybernetics,2016,9(3):465-476. [42]MAO W,WANG J,WANG L,et al.Online Sequential Prediction for Nonstationary Time Series with New Weight-Setting Strategy Using Extreme Learning Machine[J].Mathematical Problems in Engineering,2015,2015:1-13. [43]LU X,ZHOU C,HUANG M,et al.Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system[J].Neurocomputing,2016,174:617-626. [44]SAHANI M,DASH P K.Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition[J].Neurocomputing,2018,310:10-27. [45]YIN J C.A variable-structure online sequential extreme learning machine for time-varying system prediction[J].Neurocompu-ting,2017,261:115-125. [46]XU S,WANG J.Dynamic extreme learning machine for data stream classification[J].Neurocomputing,2017,238:433-449. [47]YE Y,SQUARTINI S,PIAZZA F.Online sequential extreme learning machine in nonstationary environments[J].Neurocomputing,2013,116:94-101. [48]YIN J C,ZOU Z J,XU F,et al.Online ship roll motion prediction based on grey sequential extreme learning machine[J].Neurocomputing,2014,129:168-174. [49]MIRZA B,LIN Z,LIU N.Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift[J].Neurocomputing,2015,149:316-329. [50]GHIMIRE D,LEE J.Online sequential extreme learning ma- chine-based co-training for dynamic moving cast shadow detection[J].Multimedia Tools and Applications,2015,75(18):11181-11197. [51]CAI Y,LAMARE R C D,ZHAO M,et al.Low-Com- plexity Variable Forgetting Factor Mechanism for Blind Adaptive Constrained Constant Modulus Algorithms[J].IEEE Transactions on Signal Processing,2012,60(8):3988-4002. [52]GUO W,XU T,TANG K.M-estimator-based online sequential extreme learning machine for predicting chaotic time series with outliers[J].Neural Computing & Applications,2017,28(12):4093-4110. |
[1] | 龚建锋. 抗能量分析的带符号滑动窗口标量乘算法 Resisting Power Analysis Algorithm of Scalar Multiplication Based on Signed Sliding Window 计算机科学, 2021, 48(6A): 533-537. https://doi.org/10.11896/jsjkx.191200097 |
[2] | 宋莺, 钟忺, 孙宝林, 桂超. MANET中基于滑动窗口的网络编码协作算法 Sliding Window-based Network Coding Cooperative Algorithm in MANET 计算机科学, 2020, 47(11): 322-326. https://doi.org/10.11896/jsjkx.191000181 |
[3] | 王旭, 杨晓春. 基于FLINK的滑动窗口内三角形计数算法研究 Study of Triangle Counting Algorithm with Sliding Windows Based on FLINK 计算机科学, 2020, 47(10): 83-90. https://doi.org/10.11896/jsjkx.190900014 |
[4] | 彭成, 贺婧, 池昊. 一种确定滑动窗口规模的边界距离算法 Boundary Distance Algorithm for Determining Sliding Window Size 计算机科学, 2019, 46(6A): 482-487. |
[5] | 杜娟, 沈思昀. 基于改进多权值滑动窗口的立体匹配方法的实现及应用 Implementation and Application of Stereo Matching Method Based onImproved Multi-weight Sliding Window 计算机科学, 2019, 46(11A): 241-245. |
[6] | 毛义坪, 余磊, 官泽瑾. 基于分数阶微分的多聚焦图像融合 Multi-focus Image Fusion Based on Fractional Differential 计算机科学, 2019, 46(11A): 315-319. |
[7] | 李青,肖迎元,王晓晔,李玉坤. 无线传感器网络中基于聚簇结构的Skyline查询方法 Clustering Architecture-based Skyline Query Processing in Wireless Sensor Networks 计算机科学, 2017, 44(10): 177-181. https://doi.org/10.11896/j.issn.1002-137X.2017.10.033 |
[8] | 张建辉,王会青,孙宏伟,郭芷榕,白莹莹. 基于二分迭代SAX的时序相似性度量算法 Similarity Measure Algorithm of Time Series Based on Binary-dividing SAX 计算机科学, 2017, 44(1): 247-252. https://doi.org/10.11896/j.issn.1002-137X.2017.01.046 |
[9] | 李彦,周艺,刘雨声,梁智. 无线体域网中基于时隙滑动窗口的概率路由协议 Probability Routing Protocol Based on Slotted Sliding Window in Wireless Body Area Network 计算机科学, 2016, 43(Z11): 259-263. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.060 |
[10] | 王丽珍,周丽华,邓世昆. 一种基于滑动窗口模式匹配的加权预测方法 Weighted Prediction Method Based on Sliding Window and Pattern Matching 计算机科学, 2016, 43(Z11): 591-596. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.134 |
[11] | 钟忺,杨光,卢炎生. 基于双阈值滑动窗口子镜头分割和完全连通图的关键帧提取方法 Method of Key Frames Extraction Based on Double-threshold Values Sliding Window Sub-shot Segmentation and Fully Connected Graph 计算机科学, 2016, 43(6): 289-293. https://doi.org/10.11896/j.issn.1002-137X.2016.06.057 |
[12] | 曲晓雅,刘真. 基于阈值滑动窗口机制的虚拟机迁移判决算法 Dynamic Threshold Window Algorithm for Virtual Machines Migration Decision 计算机科学, 2016, 43(4): 64-69. https://doi.org/10.11896/j.issn.1002-137X.2016.04.013 |
[13] | 陈小东,孙力娟,韩崇,郭剑. 基于模糊聚类的数据流概念漂移检测算法 Detecting Concept Drift of Data Stream Based on Fuzzy Clustering 计算机科学, 2016, 43(4): 219-223. https://doi.org/10.11896/j.issn.1002-137X.2016.04.045 |
[14] | 吕太之. 基于滑动窗口Hurst指数的心电分析研究 Research of Heart Rate Variable Analysis Based on Sliding Window Hurst 计算机科学, 2016, 43(2): 259-262. https://doi.org/10.11896/j.issn.1002-137X.2016.02.054 |
[15] | 常东亚,严建峰,杨璐,刘晓升. 基于滑动窗口的主题模型 Sliding-window Based Topic Modeling 计算机科学, 2016, 43(12): 101-107. https://doi.org/10.11896/j.issn.1002-137X.2016.12.018 |
|