计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 593-598.doi: 10.11896/jsjkx.200300131

• 交叉&应用 • 上一篇    下一篇

基于异步机制的Gazebo仿真优化研究

曾蕾1, 李豪2, 林宇斐2, 张帅2   

  1. 1 天津(滨海)军民融合人工智能创新中心 天津 300457
    2 军事科学院 北京 100000
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 李豪(lihao@nudt.edu.cn)
  • 作者简介:tjpu_zenglei@sina.com

Study on Simulation Optimization of Gazebo Based on Asynchronous Mechanism

ZENG Lei1, LI Hao2, LIN Yu-fei2, ZHANG Shuai2   

  1. 1 Tianjin Artificial Intelligence Innovation Center,Tianjin 300457,China
    2 The Academy of Military Science,Beijing 100000,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:ZENG Lei,born in 1989,master.His main research interests include compu-ter simulation and high performance computing.
    LI Hao,born in 1990,Ph.D,assistant researcher.His main research interests include parallel computing,robotics and computer simulation.

摘要: 在大规模机器人仿真过程中,为了保证仿真精度,通常采用基于时间步的推进机制。这种机制下,虽然可以通过调整仿真时间步灵活控制仿真精度,但当仿真规模较大时,在仿真循环的每次迭代中需要采用同步阻塞的方式,执行大量用于更新位姿或状态的插件代码,从而导致仿真性能降低。针对这一大规模机器人仿真所面临的精度与性能之间的矛盾,提出了一种基于异步策略的优化方案,并在流行的机器人仿真器Gazebo中对优化方案进行了设计实现,最后基于rosflight固定翼无人机案例,验证了方案的有效性。实验结果表明,对于100架固定翼无人机的仿真,采用异步策略优化重构后,仿真加速比达到了5.0以上。

关键词: Gazebo, ROS, 大规模, 高精度, 实时仿真, 异步策略, 优化重构

Abstract: In the process of large-scale robot simulation,in order to ensure the accuracy of simulation,the propulsion mechanism based on time step is usually adopted.In this mechanism,the simulation accuracy can be flexibly controlled by adjusting the simulation time step.However,when the simulation scale is large,a large number of plug-in codes for updating posture or state need to be executed in the way of synchronous blocking in each iteration of the simulation cycle,which reduces the performance of the simulation.In order to solve the contradiction between the accuracy and performance of this large-scale robot simulation,an optimization scheme based on asynchronous strategy is proposed,and the optimization scheme is designed and implemented in the popular robot simulator Gazebo.Finally,the validity of the scheme is verified based on the case of the fixed wing of rosflight UAV.The experimental results show that the acceleration ratio of the simulation is over 5.0 after the asynchronous strategy is used to optimize the simulation of 100 fixed wing UAVs.

Key words: Asynchronous strategy, Gazebo, High-precision, Large-scale, Optimal reconstruction, Real time simulation, ROS

中图分类号: 

  • TP391.9
[1] MEYER J,SENDOBRY A,KOHLBRECHER S.Comprehen-sive Simulation of Quadrotor UAVs Using ROS and Gazebo[J].Lecture Notes in Computer Science,2012:400-411.
[2] ROBERTS D J,WOLFF R,OTTO O.Constructing a Gazebo:Supporting Team Work in a Tightly Coupled,Distributed Task in Virtual Reality[J].Presence,2003,12(6):644-657.
[3] FOLGADO E,RINCÓNM J R,ÁLVAREZ R.A Multi-robotSurveillance System Simulated in Gazebo[C]//International Work-Conference on the Interplay Between Natural and Artificial Computation.1970.
[4] FURRER F,BURRI M,ACHTELIK M.RotorS-A Modular Gazebo MAV Simulator Framework[M].Springer International Publishing,2016.
[5] HSIEH M A,KUMAR V,CHAIMOWICZ L.Decentralizedcontrollers for shape generation with robotic swarms[J].Robotica,2008,26(5):691-701.
[6] FAIGL J,KRAJNIK T,CHUDOBA J,et al.Low-cost embedded system for relative localization in robotic swarms[C]//IEEE International Conference on Robotics & Automation.IEEE,2013.
[7] BACHRACH J,BEAL J,MCLURKIN J.Composable conti-nuous-space programs for robotic swarms[J].Neural Compu-ting & Applications,2010,19(6):825-847.
[8] KOENIG N,HOWARD A.Design and use paradigms for Gazebo,an open-source multi-robot simulator[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004(IROS 2004).IEEE,2004.
[9] LU Y.A framework for problem standardization and algorithm comparison in multibody system[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.2014.
[10] DRUMWRIGHT E,SHELLD .An evaluation of methods for modeling contact in multibody simulation[C]//IEEE Int.Conf.on Robotics and Automation,2011:1695-1701.
[11] SHAMSHIRI R R,HAMEED I A,PITONAKOVA L,et al.Simulation software and virtual environments for acceleration of agricultural robotics:Features highlights and performance comparison[J].Int. J. Agric. & Biol. Eng.,2018;11(4):15-31.
[12] TODOROV E,EREZ T,TASSA Y.Mujoco:A physics engine for modelbased control[C]//IEEE/RSJ Int.Conf.on Intelligent Robots and Systems.2012:5026-5033.
[13] TODOROV E.A convex,smooth and invertible contact model for trajectory optimization[C]//IEEE Int.Conf.on Robotics and Automation.2011:1071-1076.
[14] ROGLIATO B,DAM A T,PAOLI L,et al.Numerical simulation of finite dimensional multibody nonsmooth mechanicalsystems[J].Applied Mechanics Reviews,2002,55:107-150.
[15] JIA Y B.Three-dimensional impact:energy-based modeling of tangential compliance[J].Int.J.Robotic Research,2013,32(1):56-83.
[16] DURIEZ C.Control of elastic soft robots based on real-time finite element method[C]//IEEE International Conference on Robotics and Automation.IEEE,2013:3982-3987.
[17] DURIEZ C,DUBOIS F,KHEDDAR A,et al.Realistic hapticrendering of interacting deformable objects in virtual environments[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(1):36-47.
[18] JACKSON J,ELLINGSON G,MCLAIN T.ROSflight:A lightweight,inexpensive MAV research and development tool[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS).IEEE,2016.
[19] FEATHERSTONE R.Rigid Body Dynamics Algorithms[M].Springer,New York,2008.
[20] HOLLARS M,ROSENTHAL D,SHERMAN M.SD/FASTuser's manual[J].Bioinformatics,1991,20(2):3258-3260.
[21] CORKE P.A robotics toolbox for MATLAB[J].Robotics & Automation Magazine,IEEE,1996,3(1):24-32.
[1] 陈钧吾, 余华山.
面向无尺度图的Δ-stepping算法改进策略
Strategies for Improving Δ-stepping Algorithm on Scale-free Graphs
计算机科学, 2022, 49(6A): 594-600. https://doi.org/10.11896/jsjkx.210400062
[2] 卿朝进, 杜艳红, 叶青, 杨娜, 张岷涛.
存在CSI估计错误的增强型ELM叠加CSI反馈方法
Enhanced ELM-based Superimposed CSI Feedback Method with CSI Estimation Errors
计算机科学, 2022, 49(6A): 632-638. https://doi.org/10.11896/jsjkx.210800036
[3] 蒋锐, 徐姗姗, 徐友云.
一种新的基于子连接结构的混合预编码算法
New Hybrid Precoding Algorithm Based on Sub-connected Structure
计算机科学, 2022, 49(5): 256-261. https://doi.org/10.11896/jsjkx.210300138
[4] 张明新.
面向超大规模社会系统仿真的概念模型
Conceptual Model for Large-scale Social Simulation
计算机科学, 2022, 49(4): 16-24. https://doi.org/10.11896/jsjkx.210900136
[5] 潘燕娜, 冯翔, 虞慧群.
基于自适应资源分配池的竞争合作群协同优化算法
Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool
计算机科学, 2022, 49(2): 182-190. https://doi.org/10.11896/jsjkx.201200012
[6] 钟岳, 方虎生, 张国玉, 王钊, 朱经纬.
基于9轴姿态传感器的CNN旗语动作识别方法
Method of CNN Flag Movement Recognition Based on 9-axis Attitude Sensor
计算机科学, 2021, 48(6): 153-158. https://doi.org/10.11896/jsjkx.200500005
[7] 蒋化南, 张帅, 林宇斐, 李豪.
基于MPI的分布式并行Gazebo仿真优化与测试
Simulation Optimization and Testing Based on Gazebo of MPI Distributed Parallelism
计算机科学, 2021, 48(11A): 672-677. https://doi.org/10.11896/jsjkx.210100109
[8] 桑苗苗, 彭进先, 达通航, 张旭峰.
基于PatchMatch的半全局高效双目立体匹配算法
Efficient Semi-global Binocular Stereo Matching Algorithm Based on PatchMatch
计算机科学, 2021, 48(1): 204-208. https://doi.org/10.11896/jsjkx.191000205
[9] 程盛淦, 于浩然, 韦建文, 林新华.
基于定点压缩技术的双层粒子网格算法的设计与优化
Design and Optimization of Two-level Particle-mesh Algorithm Based on Fixed-point Compression
计算机科学, 2020, 47(8): 56-61. https://doi.org/10.11896/jsjkx.200200112
[10] 庄园, 郭强, 张洁, 曾云辉.
大规模申威众核环境下二维数据计算的可扩展方法
Large Scalability Method of 2D Computation on Shenwei Many-core
计算机科学, 2020, 47(8): 87-92. https://doi.org/10.11896/jsjkx.191000011
[11] 李章维, 肖璐倩, 郝小虎, 周晓根, 张贵军.
蛋白质构象空间的多模态优化算法
Multimodal Optimization Algorithm for Protein Conformation Space
计算机科学, 2020, 47(7): 161-165. https://doi.org/10.11896/jsjkx.190600100
[12] 董明刚, 弓佳明, 敬超.
基于谱聚类的多目标进化社区发现算法研究
Multi-obJective Evolutionary Algorithm Based on Community Detection Spectral Clustering
计算机科学, 2020, 47(6A): 461-466. https://doi.org/10.11896/JsJkx.191100215
[13] 李豪,崔新凯,高向川.
大规模MIMO室外无线光通信系统中基于分段高斯近似的最大似然盲检测算法
Maximum Likelihood Blind Detection Algorithm Based on Piecewise Gaussian Approximation for Massive MIMO Outdoor Wireless Optical Communication Systems
计算机科学, 2020, 47(3): 255-260. https://doi.org/10.11896/jsjkx.190200310
[14] 何霞, 汤一平, 王丽冉, 陈朋, 袁公萍.
基于Faster RCNNH的多任务分层图像检索技术
Multitask Hierarchical Image Retrieval Technology Based on Faster RCNNH
计算机科学, 2019, 46(3): 303-313. https://doi.org/10.11896/j.issn.1002-137X.2019.03.045
[15] 张士翔, 李汪根, 李童, 朱楠楠.
一种改进的贝叶斯逻辑回归核心集构建算法
Improved CoreSets Construction Algorithm for Bayesian Logistic Regression
计算机科学, 2019, 46(11A): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!