计算机科学 ›› 2020, Vol. 47 ›› Issue (2): 76-82.doi: 10.11896/jsjkx.190500092

• 计算机图形学&多媒体 • 上一篇    下一篇

基于运动矢量细化的帧率上变换与HEVC结合的视频压缩算法

蔡于涵,熊淑华,孙伟恒,Karn Pradeep,何小海   

  1. (四川大学电子信息学院 成都610065)
  • 收稿日期:2019-05-17 出版日期:2020-02-15 发布日期:2020-03-18
  • 通讯作者: 熊淑华(xiongsh@scu.edu.cn)
  • 基金资助:
    国家自然科学基金资助项目(61871279,61471248);成都市产业集群协同创新项目(2016-XT00-00015-GX)

Video Compression Algorithm Combining Frame Rate Up-conversion with HEVC Standard Based on Motion Vector Refinement

CAI Yu-han,XIONG Shu-hua,SUN Wei-heng,Karn PRADEEP,HE Xiao-hai   

  1. (College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
  • Received:2019-05-17 Online:2020-02-15 Published:2020-03-18
  • About author:CAI Yu-han,born in 1995,postgra-duate,is not member of China Compu-ter Federation.His main research in-terests include image/video coding and so on;XIONG Shu-hua,born in 1969,Ph.D,associate professor,master supervisor.Her main research interests include multimedia communication and signal processing and image processing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61871279, 61471248)and Chengdu Industrial Cluster Collaborative Innovation Project (2016-XT00-00015-GX).

摘要: 将帧率变换技术与新型视频压缩编码标准HEVC相结合有利于提升视频的压缩效率。针对直接利用HEVC码流信息中的低帧率视频的运动矢量进行帧率上变换时效果不理想的问题,文中提出了一种基于运动矢量细化的帧率上变换与HEVC结合的视频压缩算法。首先,在编码端对原始视频进行抽帧,降低视频帧率;其次,对低帧率视频进行HEVC编解码;然后,在解码端与从HEVC码流中提取出的运动矢量相结合,利用前向-后向联合运动估计对其进行进一步的细化,使细化后的运动矢量更加接近于对象的真实运动;最后,利用基于运动补偿的帧率上变换技术将视频序列恢复至原始帧率。实验结果表明,与HEVC标准相比,所提算法在同等视频质量下可节省一定的码率。同时,与其他算法相比,在节省码率相同的情况下,所提算法重建视频的PSNR值平均可提升0.5dB。

关键词: 高性能视频编码(HEVC), 联合运动估计, 运动矢量细化, 帧率变换

Abstract: Combining frame rate conversion technology with the HEVC standard will improve the compression efficiency of video.Aiming at the non-ideal result in frame rate up-conversion using the motion vector of low frame rate video extracted from HEVC coding bit stream directly,this paper proposed a compression algorithm combining frame rate up-conversion and HEVC based on motion vector refinement.Firstly,at the encoding end,the original even frames are extracted to reduce the frame rate of video,and then the low frame rate video is encoded and decoded by HEVC.Combined with the motion vector extracted from HEVC coding bit stream at the decoding end,the forward-backward joint motion estimation is used to further refine it,which makes the motion vector closer to the real motion of the object.Finally,the frame rate up conversion technique based on motion compensation is used to restore the video to its original frame rate.Experimental results show that compared with the HEVC standard,the proposed algorithm has some bitrate saving.In the meantime,compared with other algorithms,the proposed algorithm can increase the PSNR value of reconstructed videos by 0.5 dB on average with the same bitrate saving.

Key words: Frame rate up-conversion, High efficiency video coding(HEVC), Joint motion estimation, Refinement of motion vector

中图分类号: 

  • TN919.81
[1]SULLIVAN G J,OHM J,HAN W J,et al.Overview of the high efficiency video coding (HEVC) standard[J].IEEE Transac-tions on Circuits & Systems for Video Technology,2012,22(12):1649-1668.
[2]FEGHALI R,SPERANZA F,WANG D,et al.Video quality metric for bitrate control via joint adjustment of quantiza-tion and frame rate[J].IEEE Transactions on Broadcasting,2007,53(1):441-446.
[3]KANG S J,YOO S,KIM Y H.Dual motion estimation for frame rate up-conversion [J].IEEE Transactions on Circuits & Systems for Video Technology,2010,20(12):1909-1914.
[4]LIU H,XIONG R,ZHAO D,et al.Multiple hypotheses Bayesian frame rate up-conversion by adaptive fusion of motion compensated interpolations [J].IEEE Transactions on Circuits & Systems for Video Technology,2012,22(8):1188-1198.
[5]WU Q D,HE X H,LIN H W,et al.Novel video compression coding algorithm combining frame rate conversion and HEVC standard [J].Acta Automatica Sinica,2018,44(9):1626-1636.
[6]CHOI B D,HAN J W,KIM C S,et al.Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation[J].IEEE Transactions on Circuits & Systems for Video Technology,2007,17(4):407-416.
[7]KIM D,LIM H,PARK H.Iterative true motion estimation for motion compensated frame interpolatio[J].IEEE Transactions on Circuits & Systems for Video Technology,2013,23(3):445-454.
[8]DIKBAS S,ALTUNBASAK Y.Noveltrue-motion estimation algorithm and its application to motion-compensated temporal frame interpolation[J].IEEE Transactions on Image Proces-sing,2013,22(8):2931-2945.
[9]KIM U S,SUNWOO M H.New frame rate up-conversion algorithms with low compu tational complexity[J].IEEE Transactions on Circuits & Systems for Video Technology,2014,24(3):384-393.
[10]LEE W H,CHOI K,RA J B.Frame rate up-conversion based on variational image fusion[J].IEEE Transactions on Image Processing,2014,23(1):399-412.
[11]LU G,ZHANG X,CHEN L,et al.A novel frame rate up conversion using iterative non-local means interpolation [C]∥2017 IEEE International Symposiumon Broadband Multimedia Systems and Broadcasting.IEEE,2017:1-5.
[12]XU C.Frame rate up-conversion with true motion estimation and adaptive motion vector refinement[C]∥International Congress on Image & Signal Processing.IEEE,2011:15-17.
[13]HE J,YANG G,SONG J,et al.Hierarchi-cal prediction-based motion vector refinement for video frame-rate up-conversion[J].Journal of Real-Time Image Processing,2018,16(60):1-15.
[14]GUORIUI C.Frame rate up conversion algorithm based on adaptive agent motion compensation combined with semantic feature analysis[J].Journal of Ambient Intelligence and Huma-nized Computing,2018,10(54):1-8.
[15]GUO D,LU Z.Motion compensated frame interpolation with weighted motion estimation and hierarchical vector refinement[J].Neurocomputing,2016,18(1):76-85.
[16]ZHU W,SHANG M J,RONG Y,et al.Shot Boundary Detection MethodBased on HEVC Compressed Domain[J].Computer Scie-nce,2019,46(2):271-278.
[17]DE H G,BIEZEN P W A C,HUI J H,et al.True-motion estimation with 3-D recursive search block matching[J].IEEE Transactions on Circuits and Systems for Video Technology,1993,3(5):368-379.
[18]BOSSEN F.Common HM Test Conditions and Software Refe-rence Configurations[C]∥Proceedings of the 12th JCTVC Mee-ting.JCTVC,2013:1-3.
[1] 刘东, 王叶斐, 林建平, 马海川, 杨闰宇.
端到端优化的图像压缩技术进展
Advances in End-to-End Optimized Image Compression Technologies
计算机科学, 2021, 48(3): 1-8. https://doi.org/10.11896/jsjkx.201100134
[2] 张晶晶, 张爱华, 纪海峰.
基于小波与分形相结合的图像压缩编码
Image Compression Encoding Based on Wavelet Transform and Fractal
计算机科学, 2019, 46(8): 310-314. https://doi.org/10.11896/j.issn.1002-137X.2019.08.051
[3] 徐婧瑶, 王祖林, 徐迈.
基于深度学习的视频转码快速算法
Deep Learning Based Fast VideoTranscoding Algorithm
计算机科学, 2019, 46(3): 113-118. https://doi.org/10.11896/j.issn.1002-137X.2019.03.016
[4] 衡阳, 陈峰, 徐剑峰, 汤敏.
基于压缩感知的心脏磁共振快速成像的应用现状与发展趋势
Application Status and Development Trends of Cardiac Magnetic Resonance Fast Imaging Based on Compressed Sensing Theory
计算机科学, 2019, 46(1): 36-44. https://doi.org/10.11896/j.issn.1002-137X.2019.01.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!