计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 102-107.doi: 10.11896/JsJkx.190900170

• 人工智能 • 上一篇    下一篇

基于耦合强度的多项式时间社团探测算法

杨卓璇1, 马源培1, 严冠2   

  1. 1 华北电力大学经济与管理学院 北京 102206;
    2 中央财经大学管理科学与工程学院 北京 100081
  • 发布日期:2020-07-07
  • 通讯作者: 严冠(ygcufe@126.com)
  • 作者简介:yangzhuoxuan@ncepu.cn
  • 基金资助:
    国家自然科学基金(71401233);北京市自然科学基金(9182015)

Polynomial Time Community Detection Algorithm Based on Coupling Strength

YANG Zhuo-xuan1, MA Yuan-pei1 and YAN Guan2   

  1. 1 School of Economics and Management,North China Electric Power University,BeiJing 102206,China
    2 School of Management Science and Engineering,Central University of Finance and Economics,BeiJing 100081,China
  • Published:2020-07-07
  • About author:YANG Zhuo-xuan, born in 1998, postgraduate.Her maJor research interests include financial management and computer science and technology.
    YAN Guan, Ph.D.Her research interests include data mining and management science.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (71401233) and National Natural Science Foundation of BeiJing(9182015).

摘要: 在资本市场中,根据交易者联系的密切程度,可以划分出众多团体,从而产生特定的社团结构。社团结构探测是一项非常重要而具有挑战性的工作,已经引起来自不同领域学者的广泛关注。然而,极少有多项式时间算法能够快速、准确地探测社团结构。基于著名的模块化设计优化理论,用新颖的k强度关系代表两个节点之间的耦合距离这一想法随之产生。社团结构探测算法使用基于k强度矩阵的广义模块度测量。为了得到最优社团数量,一种新颖的无参数结构得以使用,该结构使用特定转移矩阵的特征值之差作为社团划分边界。最后,将此算法应用于基准网络和实际网络,以评估其有效性。理论分析和实证结果表明,该算法可以快速、准确地探测社团,且易于扩展至大型实际网络。

关键词: k强度关系, 多项式时间, 耦合距离, 社会网络, 社团结构, 最优社团数量

Abstract: In capital markets,groups can be divided according to how closely traders are connected,resulting in specific community structures.Community structure detection is one of the most interesting issues in the study of social networks.However,there are few polynomial time algorithms that can detect the community structure quickly and accurately.Inspired by the famous theory of modularity design optimization,in this paper,the idea of using a novel k-strength relationship to represent the coupling distance between two nodes is proposed.Community structure detection algorithm is presented using a generalized modularity measure based on the k-strength matrix.To obtain the optimal number of communities,a new parameter-free structure is adopted,which uses the difference of eigenvalues of specific transition matrix as the boundary of community classification.Finally,the algorithm is applied on both benchmark network and real network.Theoretical analysis and experiments show that the algorithm can detect communities quickly and accurately,and is easy to be extended to large scale real networks.

Key words: k-strength relationship, Community structure, Coupling distance, Optimal number of communities, Polynomial time, Social network

中图分类号: 

  • TP391
[1] NEWMAN M E J.Fast Algorithm for Detecting CommunityStructure in Networks.Physical Review E,2004,69:066133.
[2] NEWMAN M E J,GIRVAN M.Finding and Evaluating Community Structure in Networks.Physical Review E,2004,69:026113.
[3] NEWMAN M E J.Modularity and Community Structure in Networks.Proc Natl Acad Sci,2006,103:8577-8582.
[4] GAREY M R,JOHNSON D S.Computers and Intractability:A Guide to the Theory of NP-Completeness.San Francisco:Freeman,1979.
[5] SCOTT J.Social Network Analysis:A Handbook.London:Sage Publications,2000.
[6] GIRVAN M,NEWMAN M E J.Community Structure in Social and Biological Networks.Proc Natl Acad Sci,2002,99:7821-7826.
[7] ZHANG X S,WANG R S,WANG Y,et al.Modularity Optimization in Community Detection of Complex Networks.Europhysics Letters,2009,87:38002.
[8] ZHANG X S,LI Z,WANG R S,et al.A Combinatorial Model and Algorithm for Globally Searching Community Structure in Complex Networks.J.Comb.Optim.,2012,23(4):425-442.
[9] RADICCHI F,CASTELLANO C,CECCONI F,et al.Defining and Identifying Communities in Networks.Proc Natl Acad Sci,2004,101(9):2658-2663.
[10] LATAPY M,PONS P.Proceedings of the 20th International Symposium on Computer and Information Sciences.Lecture Notes in Computer Science,2005,3733:284-293.
[11] KERNIGHAN B W,LIN S,BELL.An Efficient Heuristic Procedure for Partitioning Graphs.System Technical Journal,1970,49:291-307.
[12] LI H J,ZHANG X S.Analysis of Stability of Community Structure Across Multiple Hierarchical Levels.Europhysics Letters,2013,103:58002.
[13] LI H J,WANG Y,WU L Y,et al.Potts Model Based on a Markov Process Computation Solves the Community Structure Problem Effectively.Physical Review E,2012,86:016109.
[14] BRANDES U.An Algorithm to Detect Community by Geodesic Line in Social Networks.International Journal on Advances in Information Sciences and Service Sciences,2006,3:0608255.
[15] HUANG L C,YEN T J,CHOU S C T.International Conference on Advances in Social Networks Analysis and Mining//IEEE Computer Society.2011:110-117.
[16] MUCHA P J.Community Structure in Time-Dependent,Multiscale,and Multiplex Networkset.Science,2010(328):876-878.
[17] GUTTMANN-BECK N,HASSIN.Approximation Algorithms for Minimum K-Cut.Algorithmica,2000(27):198-207.
[18] GAREY M R,JONSON D S.Computers and Intractability:A Guide to the Theory of NP-Completeness.San Francisco:Freeman,1979.
[19] MAKI D P.Mathematical Models and Applications,with Emphasis on social,life,and Management sciences.San Francisco:Prentice Hall College Div,1973.
[20] XIA Z Y,BU Z.Community Detection Based on a Semantic Network.Knowledge-Based Systems,2012(26):30-39.
[21] W N E,LI T,VANDEN-EIJNDEN E.Optimal Partition and Effective Dynamics of Complex Networks.Proc Natl Acad Sci,2008,105(23):7907-7912.
[22] DANON L,DUCH J,GUILERA D.Comparing Community Structure Identification.J.Stat.Mech,2005,29:P09008.
[23] BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast Unfolding of Communities in Large Networks.J.Stat.Mech,2005,10:P10008.
[24] ROSVALL M,BERGSTROM C T.Maps of Random Walks on Complex Networks Reveal Community Structure.Proc Natl Acad Sci,2008,105(4):1118-1123.
[25] PALLA G,DERENYI I,FARKAS I.Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society.Nature,2005,435:814-818.
[26] LI Z P,ZHANG S H,WANG R S,et al.Quantitative Function for Community Detection.Physical Review E,2008,77:036109.
[27] LANCICHINETTI A,FORTUNATO S.Community Detection Algorithms:A Comparative Analysis.Physical Review E,2009,80:056117.
[1] 邵玉, 陈崚, 刘维.
独立级联模型下基于最大似然的负影响力源定位方法
Maximum Likelihood-based Method for Locating Source of Negative Influence Spreading Under Independent Cascade Model
计算机科学, 2022, 49(2): 204-215. https://doi.org/10.11896/jsjkx.201100190
[2] 高吉吉, 岳雪蓉, 陈智斌.
针对经典排序问题的一种新算法的近似比分析
Approximate Ratios Analysis of New Algorithm for Classical Parallel Scheduling
计算机科学, 2021, 48(4): 37-42. https://doi.org/10.11896/jsjkx.200600064
[3] 姜新文.
哈密顿图判定问题的多项式时间算法
Polynomial Time Algorithm for Hamilton Circuit Problem
计算机科学, 2020, 47(7): 8-20. https://doi.org/10.11896/jsjkx.191200176
[4] 富坤, 仇倩, 赵晓梦, 高金辉.
基于节点演化分阶段优化的事件检测方法
Event Detection Method Based on Node Evolution Staged Optimization
计算机科学, 2020, 47(5): 96-102. https://doi.org/10.11896/jsjkx.190400072
[5] 韩忠明, 郑晨烨, 段大高, 董健.
基于多信息融合表示学习的关联用户挖掘算法
Associated Users Mining Algorithm Based on Multi-information Fusion Representation Learning
计算机科学, 2019, 46(4): 77-82. https://doi.org/10.11896/j.issn.1002-137X.2019.04.012
[6] 金婷, 谭文安, 孙勇, 赵尧.
模糊多目标进化的社会团队形成方法
Social Team Formation Method Based on Fuzzy Multi-objective Evolution
计算机科学, 2019, 46(2): 315-320. https://doi.org/10.11896/j.issn.1002-137X.2019.02.048
[7] 徐方, 邓敏, 熊曾刚, 叶从欢, 徐宁.
移动社会网络中基于多维上下文匹配的数据转发算法
Data Forwarding Algorithm Based on Multidimensional Context Matching in Mobile Social Networks
计算机科学, 2019, 46(2): 81-87. https://doi.org/10.11896/j.issn.1002-137X.2019.02.013
[8] 尹欣红, 赵世燕, 陈晓云.
带偏置的信号传播的随机游走的社团检测算法
Community Detection Algorithm Based on Random Walk of Signal Propagation with Bias
计算机科学, 2019, 46(12): 45-55. https://doi.org/10.11896/jsjkx.190700051
[9] 宾晟, 孙更新.
基于多关系社交网络的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Multi-relationship Social Network
计算机科学, 2019, 46(12): 56-62. https://doi.org/10.11896/jsjkx.181102189
[10] 胡庆成, 张勇, 邢春晓.
基于有重叠社区划分的社会网络影响最大化方法研究
K-clique Heuristic Algorithm for Influence Maximization in Social Network
计算机科学, 2018, 45(6): 32-35. https://doi.org/10.11896/j.issn.1002-137X.2018.06.005
[11] 张昱, 高克宁, 于戈.
一种融合节点属性信息的社会网络链接预测方法
Method of Link Prediction in Social Networks Using Node Attribute Information
计算机科学, 2018, 45(6): 41-45. https://doi.org/10.11896/j.issn.1002-137X.2018.06.007
[12] 付立东,聂靖靖.
基于进化谱分方法的动态社团检测
Dynamic Community Detection Based on Evolutionary Spectral Method
计算机科学, 2018, 45(2): 171-174. https://doi.org/10.11896/j.issn.1002-137X.2018.02.030
[13] 张林姿, 贾传亮.
基于拓扑路径的网络演化传播机制研究
Study of Propagation Mechanism in Networks Based on Topological Path
计算机科学, 2018, 45(11A): 308-314.
[14] 陆亿红,张振宁,杨雄.
一种基于节点特征向量的复杂网络社团发现算法
Community Structure Detection Algorithm Based on Nodes’ Eigenvectors
计算机科学, 2017, 44(Z6): 419-423. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.094
[15] 珠杰,洪军建.
基于SDAs的人物关系抽取方法研究
Research on Method of Personal Relation Extraction under SDAs
计算机科学, 2017, 44(Z6): 141-145. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.033
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!