计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 100-104.doi: 10.11896/jsjkx.191200033
李鑫超, 李培峰, 朱巧明
LI Xin-chao, LI Pei-feng, ZHU Qiao-ming
摘要: 网络表示方法旨在将每个节点映射到低维向量空间,并保留节点在网络中的结构关系。有向网络的环中节点相互可达,破坏了非对称传递性,影响了模型对网络整体结构信息的学习。为削弱有向网络的环在表示学习中的影响,增强模型对全局结构信息的感知,文中提出了一种针对有向网络表示学习的优化方法。该方法借助TrueSkill方法获取节点的层级信息,将该信息转化为边权重并引入表示学习过程。文中将此方法应用到已有的多种有向网络表示学习方法中,多个有向网络数据集上的链接预测和节点分类任务的实验结果表明,所提方法的性能相比原有方法得到了明显提升。
中图分类号:
[1] CAI H Y,ZHENG V W,CHANG K.A Comprehensive Survey of Graph Embedding:Problems,Techniques and Applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(9):1616-1637. [2] LIBEN-NOWELL D,KLEINBERG J.The link-prediction pro-blem for social networks[J].Journal of the American Society for Information Science and Technology,2007,58(7):1019-1031. [3] CHANDOLA V,BANERJEE A,KUMAR V.Anomaly Detection:A Survey[J].ACM Computing Surveys,2009,41(3):1-72. [4] WANG X,CUI P,WANG J,et al.Community preserving network embedding[C]//The 31st AAAI Conference on Artificial Intelligence.2017. [5] WEI X K,XU L CH,CAO B K,et al.Cross view link prediction by learning noise-resilient representation consensus[C]//The 26th International Conference on World Wide Web.Internatio-nal World Wide Web Conferences Steering Committee.2017:1611-1619. [6] TOMAS M,LLYA S,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//NIPS 2013.Cambridge,MA:MIT Press,2013:3111-3119. [7] TANG L,LIU H.Leveraging social media networks for classification[J].Data Mining and Knowledge Discovery,2011,23(3):447-478. [8] CAO S H,LU W,XU Q K.GraRep:Learning Graph Representations with Global Structural Information[C]//ACM International on Conference on Information & Knowledge Management.ACM,2015. [9] OU M D,CUI P,PEI J,et al.Asymmetric Transitivity Preserving Graph Embedding[C]//The 22nd ACM SIGKDD International Conference.ACM,2016. [10] WANG D,CUI P,ZHU W.Structural Deep Network Embedding[C]//The 22ndACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1225-1234. [11] TIAN F,GAO B,CUI Q,et al.Learning deep representationsfor graph clustering[C]//The Twenty-Eighth AAAI Confe-rence on Artificial Intelligence.2014. [12] PEROZZI B,AI-RFOU R,SKIENA S.DeepWalk:Online Lear-ning of Social Representations[C]//The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.ACM,2014:701-710. [13] TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//The 24th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee.2015:1067-1077. [14] GROVER A,LESKOVEC J.node2vec:Scalable Feature Lear-ning for Networks[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:855-864. [15] ZHOU C,LIU Y,LIU X,et al.Scalable graph embedding for asymmetric proximity[C]//The 31st AAAI Conference on Artificial Intelligence.2017. [16] ABU-EL-HAIJA S,PEROZZI B,AL-RFOU R.Learning edge representations via low-rank asymmetric projections[C]//The 2017 ACM on Conference on Information and Knowledge Mana-gement.ACM,2017:1787-1796. [17] ABU-EL-HAIJA S,PEROZZI B,AL-RFOU R,et al.WatchYour Step:Learning Node Embeddings via Graph Attention[C]//Neural Information Processing Systems (NIPS).2018:9180-9190. [18] SUN J,AJWANI D,NICHOLSON P K,et al.Breaking Cycles in Noisy Hierarchies[C]//the 2017 ACM on Web Science Conference.ACM,2017:151-160. [19] HERBRICH R,MINKA T,GRAEPEL T.TrueSkill:A Bayesian Skill Rating System[C]//Neural Information Processing Systems (NIPS).2007. [20] GUPTE M,SHANKAR P,LI J,et al.Finding Hierarchy in Directed Online Social Networks[C]//The 20th International Conference on World Wide Web(WWW 2011).Hyderabad,India,DBLP,2011. |
[1] | 王雪岑, 张昱, 刘迎婕, 于戈. 基于表示学习的在线学习交互质量评价方法[J]. 计算机科学, 2021, 48(2): 207-211. |
[2] | 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. |
[3] | 王慧, 乐孜纯, 龚轩, 武玉坤, 左浩. 基于特征分类的链路预测方法综述[J]. 计算机科学, 2020, 47(8): 302-312. |
[4] | 蒋宗礼, 李苗苗, 张津丽. 基于融合元路径图卷积的异质网络表示学习[J]. 计算机科学, 2020, 47(7): 231-235. |
[5] | 黄易, 申国伟, 赵文波, 郭春. 一种基于漏洞威胁模式的网络表示学习算法[J]. 计算机科学, 2020, 47(7): 292-298. |
[6] | 张志扬, 张凤荔, 陈学勤, 王瑞锦. 基于分层注意力的信息级联预测模型[J]. 计算机科学, 2020, 47(6): 201-209. |
[7] | 富坤, 仇倩, 赵晓梦, 高金辉. 基于节点演化分阶段优化的事件检测方法[J]. 计算机科学, 2020, 47(5): 96-102. |
[8] | 袁榕, 宋玉蓉, 孟繁荣. 一种基于加权网络拓扑权重的链路预测方法[J]. 计算机科学, 2020, 47(5): 265-270. |
[9] | 李鑫超, 李培峰, 朱巧明. 一种基于改进向量投影距离的知识图谱表示方法[J]. 计算机科学, 2020, 47(4): 189-193. |
[10] | 马扬, 程光权, 梁星星, 李妍, 杨雨灵, 刘忠. 有向加权网络中的改进SDNE算法[J]. 计算机科学, 2020, 47(4): 233-237. |
[11] | 张虎, 周晶晶, 高海慧, 王鑫. 融合节点结构和内容的网络表示学习方法[J]. 计算机科学, 2020, 47(12): 119-124. |
[12] | 王慧, 乐孜纯, 龚轩, 左浩, 武玉坤. 基于特征学习的链路预测模型TNTlink[J]. 计算机科学, 2020, 47(12): 245-251. |
[13] | 吴勇, 王斌君, 翟一鸣, 仝鑫. 共引增强有向网络嵌入研究[J]. 计算机科学, 2020, 47(12): 279-284. |
[14] | 顾秋阳, 琚春华, 吴功兴. 融入深度自编码器与网络表示学习的社交网络信息推荐模型[J]. 计算机科学, 2020, 47(11): 101-112. |
[15] | 陈晓军, 向阳. STransH:一种改进的基于翻译模型的知识表示模型[J]. 计算机科学, 2019, 46(9): 184-189. |
|