计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 184-189.doi: 10.11896/jsjkx.210200161

• 人工智能 • 上一篇    下一篇

群智体系网络结构的自治调节:从生物调控网络结构谈起

殷子樵1,2,3,4, 郭炳晖1,2,3,4, 马双鸽5, 米志龙1,2,3,4, 孙怡帆6, 郑志明1,2,3,4   

  1. 1 北京航空航天大学数学科学学院 北京100191
    2 鹏城实验室 广东 深圳518055
    3 教育部数学信息与行为重点实验室 北京100191
    4 北京大数据科学与脑机智能高精尖中心 北京100191
    5 耶鲁大学公共卫生学院 康涅狄格州 纽黑文06520
    6 中国人民大学统计学院 北京100872
  • 收稿日期:2021-02-25 修回日期:2021-04-09 出版日期:2021-05-15 发布日期:2021-05-09
  • 通讯作者: 郭炳晖(guobinghui@buaa.edu.cn)
  • 基金资助:
    科技创新2030-“新一代人工智能”重大项目(2018AAA0102301);国家自然科学基金项目(11671025);民机项目(MJ-F2012-04)

Autonomous Structural Adjustment of Crowd Intelligence Network: Begin from Structure of Biological Regulatory Network

YIN Zi-qiao1,2,3,4, GUO Bing-hui1,2,3,4, MA Shuang-ge5, MI Zhi-long1,2,3,4, SUN Yi-fan6, ZHENG Zhi-ming1,2,3,4   

  1. 1 School of Mathematical Sciences,Beihang University,Beijing 100191,China
    2 Peng Cheng Laboratory,Shenzhen,Guangdong 518055,China
    3 Key Laboratory of Mathematics Informatics and Behavioral Semantics,Ministry of Education,Beijing 100191,China
    4 Beijing Advanced Innovation Center for Big Data Brain Computing,Beijing 100191,China
    5 School of Public Health,Yale University,New Haven,Connecticut 06520,USA
    6 School of Statistics,Renmin University of China,Beijing 100872,China
  • Received:2021-02-25 Revised:2021-04-09 Online:2021-05-15 Published:2021-05-09
  • About author:YIN Zi-qiao,born in 1996,Ph.D,is a member of China Computer Federation.His main research interests include computational biology and complex intelligent systems.(yinziqiao@buaa.edu.cn)
    GUO Bing-hui,born in 1982,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include data science and complex intelligent systems.
  • Supported by:
    Artificial Intelligence Project(2018AAA0102301) ,National Natural Science Foundation of China (11671025) and Fundamental Research of Civil Aircraft (MJ-F-2012-04).

摘要: 群体智能作为人工智能2.0时代最突出的研究方向之一,受到了工业界和学术界研究者们的广泛关注。传统的人工智能模型倾向于使用全连通网络结构,认为全连通网络结构的人工智能模型具有更高的准确率。然而,在面对存在强干扰的复杂对抗环境时,智能决策体系需要面对由通信干扰甚至针对性攻击所造成的系统结构扰动。在不失准确性的前提下,为了能够更快、更稳定地进行实时响应,需要智能系统的结构具有实时自治响应调整机制。此类自治响应调整机制在自然界中的调控网络中很常见。文中通过引入DReSS表征族来定量分析随机网络与真实网络中结构扰动对于系统演化的影响,对比了不同网络结构对于结构扰动的抗干扰能力,并提出了一套群智体系网络结构的自治调节构想。

关键词: 布尔网络, 动力系统, 复杂网络, 计算生物学, 群体智能

Abstract: As one of the most important research directions in the artificial intelligence 2.0 era,crowd intelligence has received extensive attention from researchers in the industry and academia.Traditional artificial intelligence models tend to use the fully connected network structure to achieve higher accuracy.However,in a complex confrontation environment with stronginterfe-rence,the intelligent decision-making system needs to face system structural perturbations caused by communication interference or even targeted attack.Without losing too much accuracy,in order to achieve the demand for faster and more stable real-time response,it is necessary for intelligent system to have a real-time autonomous response structural adjustment mechanism.Such autonomous corresponding adjustment mechanisms are common in regulatory networks for biological systems.By introducing DReSS index family,this research quantitatively analyzes the impact of structural perturbations on state spaces in random and real networks.The anti-interference feature of different network structures against structural perturbations is compared.An autonomous adjustment concepts for the network structure of the crowd intelligence systems is proposed in this research.

Key words: Boolean networks, Complex networks, Computational biology, Crowd intelligence, Dynamic systems

中图分类号: 

  • TP181
[1]LI W,WU W,WANG H,et al.Crowd intelligence in AI 2.0 era[J].Frontiers of Information Technology & Electronic Engineering,2017,18(1):15-43.
[2]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
[3]DONG M,WEN S,ZENG Z,et al.Sparse fully convolutional network for face labeling[J].Neurocomputing,2019,331:465-472.
[4]YIN Z,GUO B,MI Z,et al.Gene saturation:an approach to assess exploration stage of gene interaction networks[J].Scientific Reports,2019,9(1):1-17.
[5]YIN Z,GUO B,MA S,et al.DReSS:a method to quantitatively describe the influence of structural perturbations on state spaces of genetic regulatory networks[J/OL].Briefings in Bioinforma-tics.https://doi.org/10.1093/bib/bbaa315.
[6]VIDAL M,CUSICK M E,BARABÁSIA L.Interactome net-works and human disease[J].Cell,2011,144(6):986-998.
[7]BARABÁSI A L,OLTVAI Z N.Network biology:understan-ding the cell's functional organization[J].Nature reviews gene-tics,2004,5(2):101-113.
[8]KRASENSKY J,JONAK C.Drought,salt,and temperaturestress-induced metabolic rearrangements and regulatory networks[J].Journal of Experimental Botany,2012,63(4):1593-1608.
[9]PHUKAN U J, JEENA G S, SHUKLA R K.WRKY transcription factors:molecular regulation and stress responses in plants[J].Frontiers in Plant Science,2016,7:760.
[10]BASSEL G W,LAN H,GLAAB E,et al.Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions[J].Proceedings of the Natio-nal Academy of Sciences,2011,108(23):9709-9714.
[11]WANG E,ZAMAN N,MCGEE S,et al.Predictive genomics:a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data[C]//Seminars in cancer biology.Academic Press,2015,30:4-12.
[12]NECSULEA A,SOUMILLON M,WARNEFORSM,et al.The evolution of lncRNA repertoires and expression patterns in tetrapods[J].Nature,2014,505(7485):635-640.
[13]CUPERUS J T,FAHLGREN N,CARRINGTONJ C.Evolution and functional diversification of MIRNA genes[J].The Plant Cell,2011,23(2):431-442.
[14]ELDAR A,ELOWITZM B.Functional roles for noise in genetic circuits[J].Nature,2010,467(7312):167-173
[15]XU C,DUAN H,LIU F.Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning[J].Aerospace Science and Technology,2010,14(8):535-541.
[16]ZHANG S,ZHOU Y,LI Z,et al.Grey wolf optimizer for unmanned combat aerial vehicle path planning[J].Advances in Engineering Software,2016,99:121-136.
[17]DENG W,XU J,ZHAO H.An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem[J].IEEE Access,2019,7:20281-20292.
[18]LI F,LONG T,LU Y,et al.The yeast cell-cycle network is robustly designed[J].Proceedings of the National Academy of Sciences,2004,101(14):4781-4786.
[19]DAVIDICH M I,BORNHOLDT S.Boolean network model predicts cell cycle sequence of fission yeast[J].PloS one,2008,3(2):e1672.
[1] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[2] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[3] 杨波, 李远彪.
数据科学与大数据技术课程体系的复杂网络分析
Complex Network Analysis on Curriculum System of Data Science and Big Data Technology
计算机科学, 2022, 49(6A): 680-685. https://doi.org/10.11896/jsjkx.210800123
[4] 王本钰, 顾益军, 彭舒凡, 郑棣文.
融合动态距离和随机竞争学习的社区发现算法
Community Detection Algorithm Based on Dynamic Distance and Stochastic Competitive Learning
计算机科学, 2022, 49(5): 170-178. https://doi.org/10.11896/jsjkx.210300206
[5] 陈世聪, 袁得嵛, 黄淑华, 杨明.
基于结构深度网络嵌入模型的节点标签分类算法
Node Label Classification Algorithm Based on Structural Depth Network Embedding Model
计算机科学, 2022, 49(3): 105-112. https://doi.org/10.11896/jsjkx.201000177
[6] 赵学磊, 季新生, 刘树新, 李英乐, 李海涛.
基于路径连接强度的有向网络链路预测方法
Link Prediction Method for Directed Networks Based on Path Connection Strength
计算机科学, 2022, 49(2): 216-222. https://doi.org/10.11896/jsjkx.210100107
[7] 李家文, 郭炳晖, 杨小博, 郑志明.
基于信息传播的致病基因识别研究
Disease Genes Recognition Based on Information Propagation
计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129
[8] 穆俊芳, 郑文萍, 王杰, 梁吉业.
基于重连机制的复杂网络鲁棒性分析
Robustness Analysis of Complex Network Based on Rewiring Mechanism
计算机科学, 2021, 48(7): 130-136. https://doi.org/10.11896/jsjkx.201000108
[9] 胡军, 王雨桐, 何欣蔚, 武晖栋, 李慧嘉.
基于复杂网络的全球航空网络结构分析与应用
Analysis and Application of Global Aviation Network Structure Based on Complex Network
计算机科学, 2021, 48(6A): 321-325. https://doi.org/10.11896/jsjkx.200900112
[10] 王学光, 张爱新, 窦炳琳.
复杂网络上的非线性负载容量模型
Non-linear Load Capacity Model of Complex Networks
计算机科学, 2021, 48(6): 282-287. https://doi.org/10.11896/jsjkx.200700040
[11] 马媛媛, 韩华, 瞿倩倩.
基于节点亲密度的重要性评估算法
Importance Evaluation Algorithm Based on Node Intimate Degree
计算机科学, 2021, 48(5): 140-146. https://doi.org/10.11896/jsjkx.200300184
[12] 刘胜久, 李天瑞, 谢鹏, 刘佳.
带权图的多重分形度量
Measure for Multi-fractals of Weighted Graphs
计算机科学, 2021, 48(3): 136-143. https://doi.org/10.11896/jsjkx.200700159
[13] 龚追飞, 魏传佳.
基于改进AdaBoost算法的复杂网络链路预测
Link Prediction of Complex Network Based on Improved AdaBoost Algorithm
计算机科学, 2021, 48(3): 158-162. https://doi.org/10.11896/jsjkx.200600075
[14] 龚追飞, 魏传佳.
基于拓扑相似和XGBoost的复杂网络链路预测方法
Complex Network Link Prediction Method Based on Topology Similarity and XGBoost
计算机科学, 2021, 48(12): 226-230. https://doi.org/10.11896/jsjkx.200800026
[15] 潘雨, 邹军华, 王帅辉, 胡谷雨, 潘志松.
基于网络表示学习的深度社团发现方法
Deep Community Detection Algorithm Based on Network Representation Learning
计算机科学, 2021, 48(11A): 198-203. https://doi.org/10.11896/jsjkx.210200113
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!