计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 199-205.doi: 10.11896/jsjkx.200800146
侯春萍, 赵春月, 王致芃
HOU Chun-ping, ZHAO Chun-yue, WANG Zhi-peng
摘要: 视频异常检测算法是视频处理领域的研究热点之一,用于检测视频中是否包含异常事件。然而,由于没有异常样本参与训练过程,且异常样本与正常样本之间存在一定程度的相似性,因此很难设计出一种有辨识力的异常检测模型。为了解决上述问题,文中首先提出了一种基于相似度保持和样本恢复的特征选择方法,该方法能够保留正常样本的相似关系,进而可以学习到能够准确描述正常事件的特征。其次,将异常事件检测任务转化为分类任务,并提出了一种自反馈最优子类挖掘方法来获得最优分类器。如果一个测试样本被所有分类器判断为异常,则该样本最终将被判定为异常。在公共视频数据集(Avenue数据集、UCSD Ped2数据集)上进行的大量实验的结果表明,所提异常事件检测算法可以取得很好的结果。
中图分类号:
[1]SHI Y,YI Y,ZHANG Q,et al.Kernel null-space-based abnormal event detection using hybrid motion information[J].Journal of Electronic Imaging,2019,28(2):1-12. [2]YU Y,SHEN W,HUANG H,et al.Abnormal event detection in crowded scenes using two sparse dictionaries with saliency[J].Journal of Electronic Imaging,2017,26(3),033013. [3]HASAN M,CHOI J,NEUMANN J,et al.Learning temporalregularity in video sequences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:733-742. [4]TUDOR I R,SMEUREANU S,ALEXE B,et al.Unmasking the abnormal events in video[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2895-2903. [5]RAVANBAKHSH M,NABI M,SANGINETO E,et al.Abnormal event detection in videos using generative adversarial nets[C]//2017 IEEE International Conference on Image Processing (ICIP).2017:1577-1581. [6]WANG S,ZHU E,YIN J,et al.Anomaly detection in crowded scenes by sl-hof descriptor and foreground classification[C]//23rd International Conference on Pattern Recognition (ICPR).2016. [7]WANG S,ZHU E,YIN J,et al.Video anomaly detection and localization by local motion based joint video representation and ocelm[J].Neurocomputing,2018,277(FEB):161-175. [8]LEI Q,YE Y,L S,et al.Abnormal event detection based on multi-scale markov random field[C]//Chinese Conference on Computer Vision.2015. [9]CUI L,LI K,CHEN J,et al.Abnormal event detection in traffic video surveillance based on local features[C]//2011 4th International Congress on Image and Signal Processing.2011:362-366. [10]ZELNIK-MANOR L,ROSENBLUM K,ELDAR Y C.Dictionary optimization for block-sparse representations[J].IEEE Transactions on Signal Processing,2012,60(5):2386-2395. [11]IONESCU R T,SMEUREANU S,POPESCU M,et al.Detecting abnormal events in video using narrowed normality clusters[C]//in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).2019:1951-1960. [12]AMRAEE S,VAFAEI A,JAMSHIDI K,et al.Abnormal event detection in crowded scenes using one-class svm[J].Signal,Ima-ge and Video Processing,2018,12(6):1115-1123. [13]LIU X,WANG L,ZHANG J,et al.Global and local structure preservation for feature selection[J].IEEE Transactions on Neural Networks and Learning Systems,2017,25(6):1083-1095. [14]SHAO W,HE L,LU C T,et al.Online unsupervised multi-view feature selection[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).2016:1203-1208. [15]ZHANG T,JIE Y,ZHAO D,et al.Linear local tangent spacealignment and application to face recognition[J].Neurocompu-ting,2007,70(7):1547-1553. [16]ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500),2323-2326. [17]HE X,NIYOGI P.Locality preserving projections[C]//Ad-vances in Neural Information Processing Systems.2004:153-160. [18]ZHOU T,ZHANG C,GONG C,et al.Multiview latent space learning with feature redundancy minimization[J].IEEE Tran-sactions on Cybernetics,2018,99:1-14. [19]LIN Z C,LIU R,SU Z.Linearized alternating direction method with adaptive penalty for low-rank representation[J].arXiv:1109.0367,2011. [20]LIU G,LIN Z,YAN S,et al.Robust recovery of subspace structures bylow-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(1):171-184. [21]TANG C,ZHU X,LIU X,et al.Cross-view local structure preserved diversity and consensus learning for multi-view unsupervised feature selection[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2019:5101-5108. [22]IONESCU R T,KHAN F S,GEORGESCU M I,et al.Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:7842-7851. [23]VEDALDI A,FULKERSON B.Vlfeat:An open and portable library of computer vision algorithms[C]//Proceedings of the 18th International Conference on Multimedea 2010.Firenze,Italy,2010. [24]DU Q,FABER V,GUNZBURGER M.Centroidal voronoi tessellations:Applications and algorithms[J].SIAM review,1999,41(4):637-676. [25]ARTHUR D,VASSILVITSKII S.K-means++:The advantages of careful seeding[C]//Eighteenth Acm-siam Symposium on Discrete Algorithms.2007:1027-1035. [26]LU C,SHI J,JIA J.Abnormal event detection at 150 fps in matlab[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:2720-2727. [27]DEL GIORNO A,BAGNELL J A,HEBERT M.A discriminative framework for anomaly detection in large videos[C]//European Conference on Computer Vision.Springer,2016:334-349. [28]LUO W,LIU W,GAO S.A revisit of sparse coding based ano-maly detection in stacked rnn framework[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:341-349. [29]MEHRAN R,OYAMA A,SHAH M.Abnormal crowd behavior detection using social force model[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:935-942. [30]CHONG Y S,TAY Y H.Abnormal event detection in videosusing spatiotemporal autoencoder[C]//International Sympo-sium on Neural Networks.Springer,2017:189-196. [31]KIM J K,GRAUMAN K.Observe locally,infer globally:Aspace-time mrf for detecting abnormal activities with incremental updates[C]//IEEE Conference on Computer Vision and Pattern Recognition.2009:921-2928. [32]MAHADEVAN V,LI W,BHALODIA V,et al.Anomaly detection in crowded scenes[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2010:1975-1981. |
[1] | 李斌, 万源. 基于相似度矩阵学习和矩阵校正的无监督多视角特征选择 Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment 计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124 |
[2] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[3] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[4] | 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩. 混合改进的花授粉算法与灰狼算法用于特征选择 Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection 计算机科学, 2022, 49(6A): 125-132. https://doi.org/10.11896/jsjkx.210600135 |
[5] | 储安琪, 丁志军. 基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理 Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation 计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075 |
[6] | 孙林, 黄苗苗, 徐久成. 基于邻域粗糙集和Relief的弱标记特征选择方法 Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief 计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094 |
[7] | 李宗然, 陈秀宏, 陆赟, 邵政毅. 鲁棒联合稀疏不相关回归 Robust Joint Sparse Uncorrelated Regression 计算机科学, 2022, 49(2): 191-197. https://doi.org/10.11896/jsjkx.210300034 |
[8] | 张叶, 李志华, 王长杰. 基于核密度估计的轻量级物联网异常流量检测方法 Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method 计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108 |
[9] | 杨蕾, 降爱莲, 强彦. 基于自编码器和流形正则的结构保持无监督特征选择 Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization 计算机科学, 2021, 48(8): 53-59. https://doi.org/10.11896/jsjkx.200700211 |
[10] | 胡艳梅, 杨波, 多滨. 基于网络结构的正则化逻辑回归 Logistic Regression with Regularization Based on Network Structure 计算机科学, 2021, 48(7): 281-291. https://doi.org/10.11896/jsjkx.201100106 |
[11] | 周钢, 郭福亮. 基于特征选择的高维数据集成学习方法研究 Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data 计算机科学, 2021, 48(6A): 250-254. https://doi.org/10.11896/jsjkx.200700102 |
[12] | 丁思凡, 王锋, 魏巍. 一种基于标签相关度的Relief特征选择算法 Relief Feature Selection Algorithm Based on Label Correlation 计算机科学, 2021, 48(4): 91-96. https://doi.org/10.11896/jsjkx.200800025 |
[13] | 滕俊元, 高猛, 郑小萌, 江云松. 噪声可容忍的软件缺陷预测特征选择方法 Noise Tolerable Feature Selection Method for Software Defect Prediction 计算机科学, 2021, 48(12): 131-139. https://doi.org/10.11896/jsjkx.201000168 |
[14] | 张亚钏, 李浩, 宋晨明, 卜荣景, 王海宁, 康雁. 混合人工化学反应优化和狼群算法的特征选择 Hybrid Artificial Chemical Reaction Optimization with Wolf Colony Algorithm for Feature Selection 计算机科学, 2021, 48(11A): 93-101. https://doi.org/10.11896/jsjkx.210100067 |
[15] | 董明刚, 黄宇扬, 敬超. 基于遗传实例和特征选择的K近邻训练集优化方法 K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection 计算机科学, 2020, 47(8): 178-184. https://doi.org/10.11896/jsjkx.190700089 |
|