计算机科学 ›› 2021, Vol. 48 ›› Issue (9): 264-270.doi: 10.11896/jsjkx.210100143

• 计算机网络 • 上一篇    下一篇

面向实际信道观测环境的时限约束无线下行调度策略

张帆1, 宫傲宇1, 邓磊2, 刘芳3, 林艳1, 张一晋1   

  1. 1 南京理工大学电子工程与光电技术学院 南京210094
    2 深圳大学电子与信息工程学院 广东 深圳518060
    3 香港中文大学信息工程系 香港999077
  • 收稿日期:2021-01-19 修回日期:2021-03-12 出版日期:2021-09-15 发布日期:2021-09-10
  • 通讯作者: 张一晋(yijin.zhang@gmail.com)
  • 作者简介:fan.zhang@njust.edu.cn
  • 基金资助:
    国家自然科学基金(62071236,61902256,62001225);中央高校基本科研业务经费(30920021127,30919011227);江苏省自然科学青年基金项目(BK20190454)

Wireless Downlink Scheduling with Deadline Constraint for Realistic Channel Observation Environment

ZHANG Fan1, GONG Ao-yu1, DENG Lei2, LIU Fang3, LIN Yan1, ZHANG Yi-jin1   

  1. 1 School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
    2 College of Electronics and Information Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
    3 Department of Information Engineering,The Chinese University of Hong Kong,Hong Kong 999077,China
  • Received:2021-01-19 Revised:2021-03-12 Online:2021-09-15 Published:2021-09-10
  • About author:ZHANG Fan,born in 1995,postgra-duate,is a member of China Computer Federation.Her main research interests include design and optimization for protocols in wireless networks.
    ZHANG Yi-jin,born in 1982,Ph.D,professor.His main research interests include sequence design,wireless networks,and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62071236,61902256,62001225),Fundamental Research Funds for the Central Universities of China(30920021127,30919011227) and Natural Science Foundation of Jiangsu Province(BK20190454).

摘要: 时限约束无线下行传输广泛应用于各类关系国计民生的实时通信业务,要求每个数据分组在严格传输时限内进行高可靠性传输。尽管如此,基站往往不能完全观测自身与各设备之间的信道状态,而需要借助反馈所携的信息对信道状态进行观测,从而增加了下行调度策略的设计难度。文章基于此实际信道观测环境设计时限约束下行调度策略,允许基站根据当前数据分组信息以及部分观测的各信道状态决定传输优先级。首先仅考虑队首数据分组信息对下行传输进行无限时域部分观测马尔可夫决策过程简化建模,但求解此建模的最优或近优策略在计算上不可行。鉴于此,文章应用有限时域Q函数马尔可夫决策过程算法,提出了一种低复杂度次优策略,并进一步提出一种更简单的启发式策略。仿真结果验证了所提策略相比对照策略在各种网络场景下的网络吞吐率优势,并且表明了信道的部分观测特性对吞吐率性能有较大影响。

关键词: 部分观测马尔可夫决策过程, 时限约束, 吞吐率, 下行传输策略

Abstract: Deadline-constrained wireless downlink transmissions,which have been widely used for a variety of real-time communication services that are related to the national economy and the people's livelihood,require each packet to be delivered in an ultra-reliable fashion within a strict delivery deadline.However,the base station (BS) cannot fully observe the channel state between itself and each device,and can be aware of the channel state for a device only when the BS receives a feedback from this device.This realistic channel observation environment makes the design of deadline-constrained downlink scheduling more challengeable.This paper aims to deal with this issue by allowing the BS to determine the transmission priority based on the packet information and partially-observable channel states.This paper uses an infinite-horizon partially observable Markov decision process (POMDP) to model the downlink transmission by only considering the head-of-line packets,but finding an optimal or near-optimal strategy for this model is computationally infeasible.As such,this paper proposes a suboptimal strategy with low complexity using the Q-function Markov decision process (QMDP) for the finite-horizon problems,and further proposes a simpler heuristic strategy.Simulation results demonstrate the performance advantage of the proposed strategies over baselines in various network scenarios,and indicate that the partial observability on the channel states indeed has a significant impact on the throughput performance.

Key words: Deadline constraint, Downlink transmission strategies, Partially observable Markov decision process, Throughput

中图分类号: 

  • TN911
[1]SHEN S H.Efficient SVC multicast streaming for video confe-rencing with SDN control[J].IEEE Transaction Network and Service Management,2019,16(2):403-416.
[2]LIU Q,ZENG H,CHEN M.Network utility maximization under maximum delay constraints and throughput requirements[J].IEEE/ACM Transactions on Networking,2020,28(5):2132-2145.
[3]LUVISOTTO M,PANG Z,DZUNG D.High-performance wireless networks for industrial control applications:new targets and feasibility[J].Proceedings of the IEEE,2019,107(6):1074-1093.
[4]China Electronics Standardization Institute.White Paper on Industrial IoT Connectivity[OL].http://www.cesi.cn/iot/201809/4356.html.
[5]ZOU J,PAN D,ZHOU Q,et al.An Improved Compressed Sen-sing Channel Estimation Method for Low Voltage Power Line Carrier Communication[J].Journal of Chongqing University of Technology(Natural Science),2019,33(11):155-161.
[6]WU Q L,FANG Z,ZHANG Z J,et al.A Review on Resource Optimization Strategies for Multi-flow Cooperative Ad Hoc Networks[J].Journal of Chongqing Technology and Business University (Natural Science Edition),2017,34(3):39-48.
[7]HOU I H,BORKAR V,KUMAR P R.A theory of QoS for wireless[C]//IEEE INFOCOM.2009:486-494.
[8]HOU I H,KUMAR P R.Admission control and scheduling for QoS guarantees for variable-bit-rate applications on wireless channels[C]//10th ACM International Symposium on Mobile Ad Hoc Networking and Computing.2009.
[9]HOU I H,KUMAR P R.Utility maximization for delay constrained QoS in wireless[C]//IEEE INFOCOM.2010:1-9.
[10]HOU I H,KUMAR P R.Scheduling heterogeneous real-timetraffic over fading wireless channels[J].IEEE/ACM Transactions on Networking,2014,22(5):1631-1644.
[11]KANG X,WANG W,JARAMILLO J J,et al.On the perfor-mance of largest-deficit-first for scheduling real-time traffic in wireless networks[J].IEEE/ACM Transactions on Networking,2016,24(1):72-84.
[12]KANG X,HOU I H,YING L.On the capacity requirement of largest-deficit-first for scheduling real-time traffic in wireless networks[C]//16th ACM International Symposium on Mobile Ad Hoc Networking and Computing.2015:217-226.
[13]HOU I H,RAHUL S.Scheduling of access points for multiple live video streams[C]//14th ACM International Symposium on Mobile Ad Hoc Networking and Computing.2013:267-270.
[14]DUA A,BAMBOS N.Downlink wireless packet scheduling with deadlines[J].IEEE Transactions on Mobile Computing,2008,6(12):1410-1425.
[15]DENG L,WANG C C,CHEN M,et al.Timely wireless flows with general traffic patterns:Capacity region and scheduling algorithms[J].IEEE/ACM Transactions on Networking,2017,25(6):3473-3486.
[16]ZHANG F,GONG A Y,DENG L,et al.Scheduling algorithms for wireless downlink with deadline and retransmission constraints[C]//IEEE 20th International Conference on Communication Technology.2020:736-740.
[17]GAUCHERAND E F,ARAPOSTATHIS A,MARCUS S I.On the adaptive control of a partially observable Markov decision process[C]//27th IEEE Conference on Decision and Control.1988:1204-1210.
[18]KAELBLING L P,LITTMAN M L,CASSANDRA A R,et al.Planning and acting in partially observable stochastic domains[J].Artificial Intelligence,1998,101(1):99-134.
[19]PINEAU J,GORDON G J,THRUN S.Point-based value iteration:An anytime algorithm for POMDPs[C]//18th Internatio-nal Joint Conference on Artificial Intelligence.2003.
[20]LITTMAN M L,CASSANDRA A R,KAELBLING L P.Lear-ning policies for partially observable environments:Scaling up[C]//15th International Conference on Machine Learning.1995:362-370.
[1] 陈培磊,刘萍.
基于BD预编码和时分复用的MIMO广播传输方案
MIMO Broadcast Transmission Scheme Based on BD Precoding and TDM
计算机科学, 2014, 41(Z11): 168-169.
[2] 郭晓 张更新 牛大伟 张磊 彭来献.
基于定时模型的vsAT时隙ALOHA系统性能研究
Performance Study of VSAT Slotted ALOHA System Based on Timing Model
计算机科学, 2012, 39(11): 62-64.
[3] 李 磊,韩文报.
FPGA上SHA-1算法的流水线结构实现
Implementation of Pipeline Structure on FPGA for SHA-1
计算机科学, 2011, 38(7): 58-60.
[4] 高翟,朱光喜,李彦淳,Markus Hidell.
分数频率复用的帧结构及性能分析
Frame Structure and its Performance Analysis of Fractional Frequency Reuse
计算机科学, 2010, 37(12): 53-56.
[5] 董荣胜 彭勋 郭云川 古天龙.
具有时限约束的安全协议分析技术研究

计算机科学, 2005, 32(1): 80-85.
[6] 崔宝江 熊伟 王刚 刘璟.
IP存储广域网的性能研究

计算机科学, 2004, 31(10): 50-52.
[7] 胡雨壮 孟丹.
PVFS文件系统吞吐率分析和改进

计算机科学, 2003, 30(3): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!