计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 23-30.doi: 10.11896/jsjkx.210800051
杜辉1,2, 李卓1,2, 陈昕2
DU Hui1,2, LI Zhuo1,2, CHEN Xin2
摘要: 在分层联邦学习中,能量受限的移动设备参与模型训练会消耗自身资源。为了降低移动设备的能耗,文中在不超过分层联邦学习的最大容忍时间下,提出了移动设备能耗之和最小化问题。不同训练轮次的边缘服务器能够选择不同的移动设备,移动设备也能够为不同的边缘服务器并发训练模型,因此文中基于在线双边拍卖机制提出了ODAM-DS算法。基于最优停止理论,支持边缘服务器在合适的时刻选择移动设备,使得移动设备的平均能耗最小,然后对提出的在线双边拍卖机制进行理论分析,证明其满足激励相容性、个体理性、弱预算均衡约束等特性。模拟实验的结果证明,ODAM-DS算法产生的能耗比已有的HFEL算法平均降低了19.04%。
中图分类号:
[1]ZHOU Z,CHEN X,LI E,et al.Edge intelligence:paving the last mile of artificial intelligence with edge computing[J].Procee-dings of the IEEE,2019,107(8):1738-1762. [2]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[J].arXiv:1602.05629v2,2016. [3]LIM W Y B,LUONG N C,HOANG D H,et al.Federated lear-ning in mobile edge networks:A comprehensive survey[J].IEEE Communications Surveys & Tutorials,2020,22(3):2031-2063. [4]BONAWITZ K,EICHNER H,GRIESKAM P,et al.Towardsfederated learning at scale:System design[J].arXiv:1902.01046,2019. [5]WANG S Q,TOUR T,SALONIDIS T et al.Adaptive federated learning in resource constrained edge computing systems[J].IEEE Journal on Selected Areas in Communications (JSAC),2019,37(6):1205-1221. [6]LIU L,ZHANG J,SONG S H,et al.Client-edge-cloud hierar-chical federated learning[J].arXiv:1095.06641v1,2019. [7]LUO S,CHEN X,WU Q,et al.HFEL:Joint edge associationand resource allocation for cost-efficient hierarchical federated edge learning[J].arXiv:2002.11343,2020. [8]KHAN L U,PANDEY S R,TRAN N H,et al.Federated lear-ning for edge networks:Resource optimization and incentive mechanism[J].IEEE Communications Magazine,2020,58(10):88-93. [9]CHAI H,LENG S,CHEN Y,et al.A Hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(7):3975-3986. [10]ZHAN Y,ZHANG J.An incentive mechanism design for efficient edge learning by deep reinforcement learning approach[C]//IEEE INFOCOM:2020 IEEE Conference on Computer Communications.Toronto,ON,Canada:IEEE,2020:1-10. [11]TANG J.Nodes incentive strategy based on bayesian game in Ad Hoc networks[J].Computer Engineering,2019,45(8):152-158,164. [12]ZHOU Q,LI P,NIE L.User incentive mechanism based on spatial-temporal correlation for crowd sensing[J].Computer Engineering,2021,47(3):227-236. [13]ZENG R,ZHANG S,WANG J,et al.FMore:An IncentiveScheme of Multi-dimensional Auction for Federated Learning in MEC[C]//2020 IEEE 40th International Conference on Distri-buted Computing Systems(ICDCS 2020).Singapore,IEEE,2020:278-288. [14]ZHANG X,YANG Z,ZHOU Z,et al.Free market of crowd-sourcing:incentive mechanism design for mobile sensing[J].IEEE Transactions on Parallel and Distributed Systems,2014,25(12):3190-3200. [15]LI D,YANG Q,AN D,et al.On location privacy-preserving online double auction for electric vehicles in microgrids[J].IEEE Internet of Things Journal,2019,6(4):5902-5915. [16]ZHAN Y,LI P,QU Z,et al.A learning-based incentive mechanism for federated learning[J].IEEE Internet of Things Journal,2020,7(7):6360-6368. [17]LE T H T,TRAN N H,TUN Y K,et al.Auction based incentive design for efficient federated learning in cellular wireless networks[C]//WCNC:2020 IEEE Wireless Communications and Networking Conference.Seoul,Korea (South):IEEE,2020:1-6. [18]PENG Y,WANG G C,HUANG S Q,et al.An energy consump-tion optimization strategy for data transmission based on optimal stopping theory in mobile network[J].Chinese Journal of Computers,2016,39(6):1162-1175. [19]WANG F S,WANG G C.Study on energy minimization data transmission strategy in mobile cloud computing[C]//SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI:2018 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced &Trusted Computing,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation.Guangzhou,China:IEEE,2018:1211-1218. |
[1] | 黄荣喜, 王淖, 谢天骁, 王高才. 无线网络中具有信道感知的期望能耗最小化策略研究 Study on Channel-aware Expected Energy Consumption Minimization Strategy in Wireless Networks 计算机科学, 2018, 45(10): 130-137. https://doi.org/10.11896/j.issn.1002-137X.2018.10.025 |
[2] | 康雁. 优化能耗的可变电压禁忌任务调度算法 Variable Voltage Tabu Task Scheduling Algorithm for Optimizing Energy Consumption 计算机科学, 2010, 37(10): 287-290. |
|