计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 764-770.doi: 10.11896/jsjkx.210400050

• 交叉&应用 • 上一篇    下一篇

基于法线迭代的模型中轴生成方法

宗迪迪, 谢益武   

  1. 大连海事大学信息科学技术学院 辽宁 大连 116026
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 谢益武(xieyiwu@dlmu.edu.cn)
  • 作者简介:(zongdizdf@163.com)
  • 基金资助:
    国家青年科学基金(61702074)

Model Medial Axis Generation Method Based on Normal Iteration

ZONG Di-di, XIE Yi-wu   

  1. College of Information Science and Technology,Dalian Maritime University,Dalian,Liaoning 116026,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:ZONG Di-di,born in 1995,postgraduate.Her main research interests include computer-aided design and graphics.
    XIE Yi-wu,born in 1965,associate professor.His main research interests include database and information system,and data mining.
  • Supported by:
    National Science Foundation for Youth(61702074).

摘要: 作为模型的降维表示,中轴因具有良好的性能,在许多工程领域得到了广泛应用。目前,模型中轴的生成方法主要基于近似中轴的思想,要么中轴的质量不高,要么计算的时间成本较高。由此,提出了一种基于法线迭代的模型中轴生成方法。法线迭代方法首先将模型离散化为三角网格模型,然后对样本点和三角面片进行基于中轴定义的GPU并行跟踪计算,经过多次法线迭代,得到所有样本点对应的中轴点,最后根据样本点的拓扑连接性连接对应中轴点来得到模型的中轴。实验结果表明,不同模型下该方法均可以相对快而精准地生成模型中轴,从而验证了所提方法能有效提升中轴生成的时间效率和精准性。

关键词: GPU并行, 迭代, 法线, 中轴定义, 中轴质量

Abstract: As the dimensionality reduction representation of model,the medial axis has been widely used in many engineering fields because of its good performance.At present,the method of generating the medial axis of the model is mainly based on the idea of approximating the medial axis,or the quality of the medial axis is not high,or the calculation time cost is high.As a result,a method of generating model medial axis based on normal iteration is proposed.The normal iteration method first discretizes the model into a triangular mesh model,and then performs GPU parallel tracking calculations based on the definition of the medial axis on the sample points and triangular faces.After multiple normal iterations,the medial axis points corresponding to all sample points are obtained.Finally,connecting the corresponding medial axis points according to the topological connectivity of the sample points to obtain the medial axis of the model.Experiment results show that the method can generate the model medial axis relatively quickly and accurately under different models,which verifies that the method improves the time efficiency and accuracy of the medial axis generation.

Key words: Definition of medial axis, GPU parallel, Iteration, Normal, Quality of medial axis

中图分类号: 

  • TP391.41
[1] LIANG Y,HU P,WANG S,et al.Medial axis extraction algorithm specializing in porous media[J].Powder Technology,2019,343:512-520.
[2] MIAO Y W,CHENG C,SUN Y L,et al.Skeleton extraction of mesh model based on maximum inscribed sphere fitting[J].Chinese Journal of Computer Aided Design and Graphics,2018,30(10):1801-1809.
[3] SPADAFORA J B,GOMEZ-FERNANDEZ F,TAUBIN G.Fast Non-Convex Hull Computation[C]//2019 International Confe-rence on 3D Vision(3DV).IEEE,2019:747-755.
[4] MING L U O,CE H A H,HAFEEZ H M.Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks[J].Chinese Journal of Aeronautics,2019,32(8):2009-2016.
[5] CHANG J S.Representation and application of axis transformation for 3D deformable objects [D].Ningbo:Ningbo University,2017.
[6] ZHONG Y J.Summary of axis extraction methods[J].Journal of Computer Aided Design and Graphics,2018,30(8):14-32.
[7] BRUNNER D,BRUNNETT G.Mesh segmentation using theobject skeleton graph[EB/OL].[2017-07-15].https://www.mendeley.com/research-papers/mesh-segmentation-using-object-keleto.
[8] YAN Y,SYKES K,CHAMBERS E,et al.Erosion thickness onmedial axes of 3D shapes[J].ACM Transactions on Graphics(TOG),2016,35(4):1-12.
[9] ZHANG F,CHEN X,ZHANG X.Parallel thinning and skele-tonization algorithm based on cellular automaton[J].Multi-media Tools and Applications,2020,79(43):33215-33232.
[10] ZHONG Y,CHEN F.Computing medial axis transformations of 2D point clouds[J].Graphical Models,2018,97:50-63.
[11] KUSMAKAR S,MUTHUGANAPATHY R.Skeletal approach to mandible reconstruction represented as an image[J].Compu-ter-Aided Design and Applications,2015,12(5):639-650.
[12] MAKEM J E,FOGG H J,MUKHERJEE N.Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing[C]//International Meshing Roundtable.Cham:Springer,2018:109-128.
[13] SHI C W,ZHAO J Y,CHANG J S.Skeleton feature extraction algorithm based on central axis transformation[J].Computer Engineering,2019(7):242-250.
[14] CHEN X D,MA W.A competition flow method for computing medial axis transform[J].Journal of Computational and Applied Mathematics,2018,340:342-359.
[15] SUN F,CHOI Y K,YU Y,et al.Medial meshes-a compact and accurate representation of medial axis transform[J].IEEE Transactions on Visualization and Computer Graphics,2015,22(3):1278-1290.
[16] YAN Y,LETSCHAR D,JU T.Voxel cores:Efficient,robust,and provably good approximation of 3d medial axes[J].ACM Transactions on Graphics(TOG),2018,37(4):1-13.
[17] WAGNER M G.Real-time thinning algorithms for 2D and 3D images using GPU processors[J].Journal of Real-Time Image Processing,2019:1-12.
[18] SAHA P K,BORGEFORS G,DI BAJA G S.A survey on skeletonization algorithms and their applications[J].Pattern Recognition Letters,2016,76:3-12.
[19] REBAIN D,ANGLES B,VALENTIN J,et al.LSMAT least squares medial axis transform[J].Computer Graphics Forum,2019,38(6):5-18.
[20] ZHU H S,BAO X S,ZHU C Y,et al.Parallel shape axis extraction algorithm based on binormal tracking[J].Computer Engineering and Design,2021,42(1):175-181.
[21] LI Z.Mesh generation and planarization of quadrilateral building with free form surface [D].Hangzhou:Zhejiang University,2019.
[1] 吕由, 吴文渊.
隐私保护线性回归方案与应用
Privacy-preserving Linear Regression Scheme and Its Application
计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190
[2] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[3] 汪晋, 刘江.
基于GPU的并行DILU预处理技术
GPU-based Parallel DILU Preconditioning Technique
计算机科学, 2022, 49(6): 108-118. https://doi.org/10.11896/jsjkx.210300259
[4] 唐超尘, 仇洪冰, 刘鑫, 唐清华.
非均匀白噪声条件下的相干MIMO雷达角度估计
Angle Estimation of Coherent MIMO Radar Under the Condition of Non-uniform Noise
计算机科学, 2022, 49(5): 262-265. https://doi.org/10.11896/jsjkx.210300162
[5] 周琴, 罗飞, 丁炜超, 顾春华, 郑帅.
基于逐次超松弛技术的Double Speedy Q-Learning算法
Double Speedy Q-Learning Based on Successive Over Relaxation
计算机科学, 2022, 49(3): 239-245. https://doi.org/10.11896/jsjkx.201200173
[6] 池昊宇, 陈长波.
基于机器学习的编译器自动调优综述
Survey on Automatic Tuning of Compilers by Machine Learning
计算机科学, 2022, 49(1): 241-251. https://doi.org/10.11896/jsjkx.210100113
[7] 王丹妮, 陈伟, 羊洋, 宋爽.
基于高斯增强和迭代攻击的对抗训练防御方法
Defense Method of Adversarial Training Based on Gaussian Enhancement and Iterative Attack
计算机科学, 2021, 48(6A): 509-513. https://doi.org/10.11896/jsjkx.200800081
[8] 宋昱, 孙文赟.
改进非线性结构张量的含噪图像边缘检测
Edge Detection in Images Corrupted with Noise Based on Improved Nonlinear Structure Tensor
计算机科学, 2021, 48(6): 138-144. https://doi.org/10.11896/jsjkx.200600017
[9] 徐艺菲, 熊淑华, 孙伟恒, 何小海, 陈洪刚.
基于非局部低秩和自适应量化约束先验的HEVC后处理算法
HEVC Post-processing Algorithm Based on Non-local Low-rank and Adaptive Quantization Constraint Prior
计算机科学, 2021, 48(5): 155-162. https://doi.org/10.11896/jsjkx.200800079
[10] 李繁, 严星, 张晓宇.
基于GPU的特征脸算法优化研究
Optimization of GPU-based Eigenface Algorithm
计算机科学, 2021, 48(4): 197-204. https://doi.org/10.11896/jsjkx.200600033
[11] 李雨蓉, 刘杰, 刘亚林, 龚春叶, 王勇.
面向语音分离的深层转导式非负矩阵分解并行算法
Parallel Algorithm of Deep Transductive Non-negative Matrix Factorization for Speech Separation
计算机科学, 2020, 47(8): 49-55. https://doi.org/10.11896/jsjkx.190900202
[12] 徐旭东, 张志祥, 张献.
私有二进制协议中变长域的格式挖掘方法
Format Mining Method of Variable-length Domain in Private Binary Protocol
计算机科学, 2020, 47(6A): 556-560. https://doi.org/10.11896/JsJkx.190900035
[13] 郑浩, 于俊洋, 魏上斐.
基于余弦控制因子和迭代局部搜索的蝙蝠优化算法
Bat Optimization Algorithm Based on Cosine Control Factor and Iterative Local Search
计算机科学, 2020, 47(11A): 68-72. https://doi.org/10.11896/jsjkx.200200063
[14] 侯东升,汪海,崔逊学.
免声速迭代式TDOA测向研究
Study on TDOA Direction Finding of Iterative Model Without Sound Speed
计算机科学, 2019, 46(7): 67-73. https://doi.org/10.11896/j.issn.1002-137X.2019.07.010
[15] 张福旺, 苑会娟.
一种自适应稀疏表示和非局部自相似性的图像超分辨率重建算法
Image Super-resolution Reconstruction Algorithm with Adaptive Sparse Representationand Non-local Self-similarity
计算机科学, 2019, 46(6A): 188-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!