计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 78-85.doi: 10.11896/jsjkx.210700121

• 数据库&大数据&数据科学* 上一篇    下一篇

基于卷积神经网络的APP用户行为分析方法

陈泳全, 姜瑛   

  1. 云南省计算机技术应用重点实验室 昆明 650500
    昆明理工大学信息工程与自动化学院 昆明 650500
  • 收稿日期:2021-07-12 修回日期:2021-12-10 发布日期:2022-08-02
  • 通讯作者: 姜瑛(jy_910@163.com)
  • 作者简介:(1977162878@qq.com)
  • 基金资助:
    国家自然科学基金(62162038,61462049,61063006,60703116);国家重点研发计划(2018YFB1003904);云南省应用基础研究计划重点项目(2017FA033);云南省计算机技术应用重点实验室开放基金(2020101)

Analysis Method of APP User Behavior Based on Convolutional Neural Network

CHEN Yong-quan, JIANG Ying   

  1. Yunnan Key Lab of Computer Technology Application,Kunming 650500,China
    Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2021-07-12 Revised:2021-12-10 Published:2022-08-02
  • About author:CHEN Yong-quan,born in 1998,postgraduate,is a member of China Computer Federation.His main research interests include software engineering and so on.
    JIANG Ying,born in 1974,Ph.D,professor,Ph.D supervisor,is a distinguished member of China Computer Federation.Her main research interests include software quality assurance and testing,cloud computing,big data analysis and intelligent software engineering.
  • Supported by:
    National Natural Science Foundation of China(62162038,61462049,61063006,60703116),National Key Research and Development Program of China(2018YFB1003904),Key Project of Yunnan Applied Basic Research(2017FA033) and Open Foundation of Yunnan Key Laboratory of Computer Technology Application(2020101).

摘要: 随着移动互联网的快速发展,智能终端已经成为人们日常生活和工作中不可或缺的一部分。在使用智能终端的过程中,会产生大量的APP操作过程记录,对用户APP操作过程记录进行分析,可以获取到操作过程记录中用户的行为,从而获得用户的行为模式,以帮助开发人员有针对性地维护和改进APP软件。现有的用户行为分析偏向操作分析,缺少对用户操作的行为提取,因此提出了一种基于卷积神经网络的APP用户行为分析方法。该方法首先进行APP操作分析,提取出原始APP操作记录信息中的用户操作;然后挖掘APP操作与APP用户行为之间的关联性,构建APP操作与APP用户行为之间的相似度矩阵;最后提取APP用户行为。实验结果表明,该方法能够有效地提取和识别APP操作过程记录中用户的行为,有助于深层次地挖掘APP用户行为的含义。

关键词: APP软件, APP用户行为, 操作分析, 卷积神经网络, 用户APP操作过程记录

Abstract: With the rapid development of mobile Internet,smart terminal has become an indispensable part of people’s daily life and work.In the process of using smart terminal,a large number of APP operation process records will be generated.By analyzing the user’s APP operation process records,the user’s behaviors in the operation process and the user’s behavior pattern can be obtained,which can help developers maintain and improve the APP software.Existing user behavior analysis is biased towards operation analysis and thebehaviors extraction for user’s operation is lacked.An APP user behaviors analysis method based on convolution neural network is proposed.At first,the APP operations are analyzed,and the user operations in the original APP operation record information are extracted.Then the correlation between APP operation and user’s behaviors is mined,and the similarity matrix between APP operations and APP user’s behaviors is constructed.Finally,the behaviors of users will be extracted.Experiments show that this method can extract and identify the user’s behaviors in the records of APP operationprocess effectively,which will be helpful to explore the deep meaning of user’s behaviors.

Key words: APP software, APP user behavior, Convolutional neural network, Operation analysis, Operation process record of user APP

中图分类号: 

  • TP311
[1]AHMED N.Generation Z’s Smartphone and Social MediaUsage:A Survey[J].Journalism and Mass Communication,2019,9(3):101-122.
[2]CAO H,LIN M.Mining smartphone data for app usage prediction and recommendations:A survey[J].Pervasive and Mobile Computing,2017,37:1-22.
[3]ZHAO S,XU F,XU Y,et al.Investigating smartphone userdifferences in their application usage behaviors:an empirical study[J].CCF Transactions on Pervasive Computing and Interaction,2019,1(2):140-161.
[4]SHEN K,YE X J,LIU X N,et al.Android APP behavior-intention inference based on API usage analysis [J].Journal of Tsinghua University(Science and Technology),2017,57(11):1139-1144.
[5]LIU Y Q,CEN R W,ZHANG M,et al.Automatic Search Engine Performance Evaluation Based on User Behavior Analysis[J].Journal of Software,2008,19(11):3023-3032.
[6]KE Y,LIU Y,LIN B Q,et al.Positive and Unlabeled Learning for User Behavior Analysis Based on Mobile Internet Traffic Data[J].IEEE Access,2018,6:37568-37580.
[7]LIAO Z F,LI S J,HE D Y,et al.Analysis of Key User Behavior in GitHub Open Source Software Development[J].Journal of Chinese Computer Systems,2019,40(1):164-168.
[8]LI B.Research and Implementation of APP User Behavior Ana-lysis Based on Android[D].Beijing:Beijing University of Posts and Tele-communications,2018.
[9]ZHANG L,ZHAO N.Internet Users’ Browsing BehaviorsAnalysis[J].Computer Systems & Applications,2016,25(6):260-264.
[10]LI Q,DAN L.Research of Music Recommendation SystemBased on User Behavior Analysis and Word2vec User Emotion Extraction[C]//International Conference on Intelligent & Interactive Systems & Applications.Cham:Springer,2017.
[11]JIANG Z W.AppUsage2Vec:user behavior modeling and application based on mobile app usage record [D].Hangzhou:Zhejiang University,2018.
[12]JIANG Y.Design and implementation of APP recommendation system based on user behavior [D].Nanjing:Southeast University,2018.
[13]CHEN D.Design and implementation of user behavior analysis department based on big data platform [D].Wuhan:Huazhong University of Science & Technology,2016.
[14]GUO J X,GAO C,XU N S,et al.User behavior analysis based on Web browsing logs [J].Computer Science,2014,41(3):110-115.
[15]FUJIO T,TAKAFUMI N,MITSUTERU T,et al.Analysisof User Behavior on Private Chat System[C]//2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology Workshops.2016:1-4.
[16]REN Q.Design of Mobile APP User Behavior Analysis Engine Based on Cloud Computing[J/OL].Journal of Physics:Confe-rence Series,2020,1533(2).https://iopscience.iop.org/article/10.1088/1742-6596/1533/2/022092.
[17]WANG R,QIN X,WANG B.Design of Mobile User Behavior Analysis System Based on Big Data[J].China Computer & Communication,2019(11):88-90.
[18]LING Y X,LI R,LAO S Y.Command Space User OperationModel Based on Multi-fingers Touch[J].Computer Enginee-ring,2009,35(10):1-3.
[19]GUO W Y.The Design and Implementation of Personalized Recommender System Based on the Analysis of User’s Behaviors[D].Nanjing:Nanjing University,2012.
[20]SU H,WAN G G.Electronic Forensics System Based on User Behaviors Correlation Analysis[J].Telecommunication Science,2010,26(12):72-78.
[21]LI Y D,HAO Z B,LEI H.Survey of convolutional neural network[J].Journal of Computer Applications,2016,36(9):2508-2515.
[22]LIU X S.Study on Mining Methods and Implementations of Smartphone APP Logs for Understanding User Behaviors[D].Lanzhou:Northwest Minzu University,2020.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[4] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[5] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[6] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[7] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[8] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[9] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[10] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[11] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
[12] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[13] 王杉, 徐楚怡, 师春香, 张瑛.
基于CNN-LSTM的卫星云图云分类方法研究
Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM
计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!