计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 268-274.doi: 10.11896/jsjkx.210700220

• 计算机网络 • 上一篇    下一篇

飞机机内无线通信网络架构与接入控制算法研究

郭鹏军, 张泾周, 杨远帆, 阳申湘   

  1. 西北工业大学自动化学院 西安 710129
  • 收稿日期:2021-07-23 修回日期:2022-01-03 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 张泾周(835018585@qq.com)
  • 作者简介:(pjguo7@mail.nwpu.edu.cn )

Study on Wireless Communication Network Architecture and Access Control Algorithm in Aircraft

GUO Peng-jun, ZHANG Jing-zhou, YANG Yuan-fan, YANG Shen-xiang   

  1. School of Automation,Northwestern Polytechnical University,Xi'an 710129,China
  • Received:2021-07-23 Revised:2022-01-03 Online:2022-09-15 Published:2022-09-09
  • About author:GUO Peng-jun,born in 1996,postgra-duate.His main research interests include airborne communication network and wireless communication network.
    ZHANG Jing-zhou,born in 1960,professor,master supervisor.His main research interests include computer networks,airborne network,computer control and computer measurement.

摘要: 随着航空电子系统的快速发展,大量设备和传感器接入机内网络,这使得飞机机内通信网络的体系结构变得复杂而繁重。无线通信网络代替机内有线通信网络,能有效解决布线繁杂、重量大、线路故障检测困难等诸多问题。然而,无线网络在实时性、可靠性等方面仍有一定的限制,而这又恰恰是机载互连系统最关心的问题。对此,文中对现有的机内有线通信网络架构进行了分析,根据其通信特点设计了无线接入网络-有线骨干网络的混合通信网络架构;对候选的无线通信方案进行了评估和选取;将无线网络的接入固定时隙改进为按流量进行动态分配,建立了动态时隙分配问题的数学模型,设计了TDMA周期以及最优时隙分配策略;最后,一个典型的机载网络任务表明,在保证系统可调度的前提下,该策略可将网络利用率从36.5%提升到41.8%,验证了该方法的有效性。

关键词: 机内通信网络, 超宽带通信, 时分多址, 时隙分配, 访问控制

Abstract: With the rapid development of avionics system,a large number of devices and sensors are connected to the in-plane network,which makes the architecture of the in-plane communication network complex and heavy.Wireless communication network can effectively solve many problems,such as complicated wiring,heavy weight and difficult line fault detection.However,wireless network still has certain limitations in real-time and reliability,which is precisely the most concerned problem of airborne interconnection system.In this paper,the existing wired communication network architecture is analyzed,a hybrid communication network architecture of wireless access network and wired backbone network is designed according to its communication characteristics.The candidate wireless communication schemes are evaluated and selected.The fixed time slot of wireless network access is improved to dynamic allocation according to traffic,the mathematical model of dynamic time slot allocation is established,and the TDMA period and the optimal time slot allocation strategy are designed.Finally,a typical airborne network task shows that the strategy can improve the network utilization rate from 36.5% to 41.8% on the premise of ensuring that the system is schedulable,which verifies the effectiveness of the method.

Key words: Avionics wireless communication networks, Ultra-wideband communication, Time division multiple access, Time slot allocation, Access control

中图分类号: 

  • TP393
[1]HE F.airborne network technology foundation [M].National Defense Industry Press.2018:224-225.
[2]PETER R J,NATARAJAN K.Performance Evaluation ofWireless Protocols for Avionics Wireless Network [J].Aepospace Information Systems,2020,17(3):1-5.
[3]AYSEGUL A,ANDREAS B.Dynamic Reconfigurability ofWireless Sensor and Actuator Networks in Aircraft[C]//International Conference on Wireless for Space and Extreme Environments(WISEE).2017:10-12.
[4]ROBLES R,TOVAR E,CINTRA J,et al.Wireless avionics intra-communications:current trends and design issues[C]//Ele-venth International Conference on Digital Information Management.2016:266-273.
[5]AKRAM R N,MARKANTONAKIS K,MAYES K,et al.Security and Performance Comparison of Different Secure Channel Protocols for Avionics Wireless Networks [J].IEEE Internet of Things Journal,2016,19(5):20-31.
[6]PARK P,DI MARCO P,NAH J,et al.Wireless avionics intra-communications:a survey of benefits,challenges,and solutions[J].IEEE Internet of Things Journal,2020,7( 99):1-23.
[7]FRANK L,DIMITRI T,SERGIO B.Wireless in-cabin communication for aircraft infrastructure[J].Springer Science & Business Media,2011,56(4):28-31.
[8]DANG D K,MIFDAOUI A,GAYRAUD T.Fly-By-Wireless for next generation aircraft Challenges and potential solutions[C]//Wireless Days.IEEE,2012:1-8.
[9]DANG D K.Timing Analysis of TDMA-based Networks using Network [C]//Calculus and Integer Linear Programming.2014:26-30.
[10]ZHANG C,XIAO J,ZHAO L.Wireless asynchronous transfer mode based fly-by-wireless avionics network[C]//Digital Avio-nics Systems Conference.IEEE,2013:1-15.
[11]LI S N,FAN X H,LIU Z Z.Status and Analysis of WirelessAvionics Intra-Communications Network Protocol [J].Journal of Beijing University of Posts and Telecommunications,2021,44(3):1-10.
[12]ROLAND W.Distributed platform of integrated modular avio-nics system [M].Beijing:Aviation Industry Press,2015.
[13]XIONG H G,WANG Z H.Advanced avionics integrated technology [M].Beijing:National Defense Industry Press,2009.
[14]RAMANATT P R,NATARAJAN K,SHOBHA K R.Challenges inimplementing a wireless avionics network[J].Aircraft Engineering and Aerospace Technology,2020,92(3):482-494.
[15]SAMBOU B,PEYRARD F.Scheduling avionicsflows on anIEEE 802.11e HCCA and AFDX hybrid network[J].Procee-dings of International Symposium on Computers and Communications,2011,31(5):205-212.
[16]AKRAM R N,MARKANT-ONAKIS K.Security and Perfor-mance Comparison of Different Secure Channel Protocols for Avionics Wireless Networks[C]//International Conference on Wireless for Space and Extreme Environments(WISEE).2016:25-29.
[17]BANG I,NAM H,CHANG W,et al.Channel measurementand feasibility test for wireless avionics intra-communication[J].Sensors,2019,19( 6):1-15.
[18]BAYKAS T,SUM C S,LAN Z,et al.IEEE802.15.3c:the first IEEE wireless standard for data rates over 1 Gb/s[J].Communications Magazine IEEE,2011,49(7):114-121.
[19]ALLIANCE W.ECMA-368 High Rate Ultra-Wideband PHYand MAC Standard[S].ECMA Std,2018:12-15.
[20]ZUO Y J,LI Q,XONG H G,et al.Analysis and simulation ofavionics MB-OFDM-UWB wireless interconnection channel[J].Acta Aeronautica et Astronautica Sinica,2019,40( 7):1-10.
[21]HE F.Theory and approach to avionics system integrated sche-duling[M].Beijing:Tsinghua University Press,2017.
[22]WANG W,WU G Y,GUO Z,et al.Data Scheduling and Resource Optimization for Fog Computing Architecture in Industrial IoT[C]//2019 International Conference on Distributed Computing and Internet Technology.2019:141-149.
[23]ZHAO L X,POP P,LI Q.Timing analysis of rate-constrained traffic in TTE thernet using network calculus[J].Real-Time System,2017,53(2):254-287.
[1] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[2] 郭显, 王雨悦, 冯涛, 曹来成, 蒋泳波, 张迪.
基于区块链的工业控制系统角色委派访问控制机制
Blockchain-based Role-Delegation Access Control for Industrial Control System
计算机科学, 2021, 48(9): 306-316. https://doi.org/10.11896/jsjkx.210300235
[3] 程学林, 杨小虎, 卓崇魁.
基于组织架构的数据权限控制模型研究与实现
Research and Implementation of Data Authority Control Model Based on Organization
计算机科学, 2021, 48(6A): 558-562. https://doi.org/10.11896/jsjkx.200700127
[4] 潘瑞杰, 王高才, 黄珩逸.
云计算下基于动态用户信任度的属性访问控制
Attribute Access Control Based on Dynamic User Trust in Cloud Computing
计算机科学, 2021, 48(5): 313-319. https://doi.org/10.11896/jsjkx.200400013
[5] 何亨, 蒋俊君, 冯可, 李鹏, 徐芳芳.
多云环境中基于属性加密的高效多关键词检索方案
Efficient Multi-keyword Retrieval Scheme Based on Attribute Encryption in Multi-cloud Environment
计算机科学, 2021, 48(11A): 576-584. https://doi.org/10.11896/jsjkx.201000026
[6] 曹萌, 于洋, 梁英, 史红周.
基于区块链的大数据交易关键技术与发展趋势
Key Technologies and Development Trends of Big Data Trade Based on Blockchain
计算机科学, 2021, 48(11A): 184-190. https://doi.org/10.11896/jsjkx.210100163
[7] 徐堃, 付印金, 陈卫卫, 张亚男.
基于区块链的云存储安全研究进展
Research Progress on Blockchain-based Cloud Storage Security Mechanism
计算机科学, 2021, 48(11): 102-115. https://doi.org/10.11896/jsjkx.210600015
[8] 王静宇, 刘思睿.
大数据风险访问控制研究进展
Research Progress on Risk Access Control
计算机科学, 2020, 47(7): 56-65. https://doi.org/10.11896/jsjkx.190700157
[9] 顾荣杰, 吴治平, 石焕.
基于TFR 模型的公安云平台数据分级分类安全访问控制模型研究
New Approach for Graded and Classified Cloud Data Access Control for Public Security Based on TFR Model
计算机科学, 2020, 47(6A): 400-403. https://doi.org/10.11896/JsJkx.191000066
[10] 潘恒, 李景峰, 马君虎.
可抵御内部威胁的角色动态调整算法
Role Dynamic Adjustment Algorithm for Resisting Insider Threat
计算机科学, 2020, 47(5): 313-318. https://doi.org/10.11896/jsjkx.190800051
[11] 王辉, 刘玉祥, 曹顺湘, 周明明.
融入区块链技术的医疗数据存储机制
Medical Data Storage Mechanism Integrating Blockchain Technology
计算机科学, 2020, 47(4): 285-291. https://doi.org/10.11896/jsjkx.190400001
[12] 屠袁飞,张成真.
面向云端的安全高效的电子健康记录
Secure and Efficient Electronic Health Records for Cloud
计算机科学, 2020, 47(2): 294-299. https://doi.org/10.11896/jsjkx.181202256
[13] 乔毛,秦岭.
云存储服务中一种高效属性撤销的AB-ACCS方案
AB-ACCS Scheme for Revocation of Efficient Attributes in Cloud Storage Services
计算机科学, 2019, 46(7): 96-101. https://doi.org/10.11896/j.issn.1002-137X.2019.07.015
[14] 黄美蓉, 欧博, 何思源.
一种基于特征提取的访问控制方法
Access Control Method Based on Feature Extraction
计算机科学, 2019, 46(2): 109-114. https://doi.org/10.11896/j.issn.1002-137X.2019.02.017
[15] 赵鹏, 吴礼发, 洪征.
基于经纪人的多云访问控制模型研究
Research on Broker Based Multicloud Access Control Model
计算机科学, 2019, 46(11): 123-129. https://doi.org/10.11896/jsjkx.190300112
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!