计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220900284-8.doi: 10.11896/jsjkx.220900284

• 人工智能 • 上一篇    下一篇

基于改进蝴蝶算法的机械臂时间最优轨迹规划

周明月, 周明伟, 刘桂岐, 程超   

  1. 长春工业大学计算机科学与工程学院 长春 130000
  • 发布日期:2023-11-09
  • 通讯作者: 刘桂岐(liuguiqiay@126.com)
  • 作者简介:(zmyjlu@ccut.edu.cn)
  • 基金资助:
    吉林省教育厅重点项目(JKH20210754KJ)

Time Optimal Trajectory Planning of Manipulator Based on Improved Butterfly Algorithm

ZHOU Mingyue, ZHOU Mingwei, LIU Guiqi, CHEN Chao   

  1. School of Computer Science and Engineering,Changchun University of Technology,Changchun 130000,China
  • Published:2023-11-09
  • About author:ZHOU Mingyue,born in 1980,Ph.D,associate professor.Her main research interests include nonlinear optimization and wireless communication.
    LIU Guiqi,born in 1986,Ph.D.Her main research interests include wireless network location technology and so on.
  • Supported by:
    Key Projects of Jilin Provincial Department of Education(JKH20210754KJ).

摘要: 机械臂在轨迹规划过程中,为使驱动装置符合实际负载要求,各关节速度和加速度在选取上会相对保守,导致完成一套动作需要的时间过长,从而使基于运动速度和加速度的机械臂的连续性和平稳性未能充分发挥。为解决机械臂各个关节速度和加速度的优化问题,提出一种基于改进蝴蝶算法的机械臂时间最优轨迹规划方法。首先,利用3-5-3多项式插值算法对AUBO-i5六自由度机械臂构造机械臂运动轨迹,然后,利用引入莱维飞行和正弦余弦算法的蝴蝶优化算法对运动轨迹进行时间优化,在满足工作需求的前提下,减少机械臂的运行时间。仿真结果表明,改进的蝴蝶算法与同类算法相比,不易陷入局部最优,且具有更高的寻优精度。将改进的蝴蝶算法应用在轨迹规划中,机械臂的运动时间大大缩短,可保证机械臂在实际生产中平稳高效地完成任务。

关键词: 机械臂, 时间最优轨迹规划, 改进的蝴蝶算法, 3-5-3多项式

Abstract: Aiming to plan the trajectory of the manipulator,common practice makes the drive device meet the actual load requirements,the velocity and acceleration of each joint will be relatively conservative in the selection.As a result,it takes too long to complete a set of actions,so that the continuity and smoothness of the manipulator based on motion speed and acceleration cannot be fully exerted.In order to solve the problem of optimal selection of the velocity and acceleration of each joint of the manipulator,a time-optimal trajectory planning method of the manipulator based on the improved butterfly algorithm is proposed.Firstly,the 3-5-3 polynomial interpolation algorithm is used to construct the motion trajectory of the robotic arm of AUBO-i5 six-degree-of-freedom manipulator.Then,the butterfly optimization algorithm introducing Levi flight and sine cosine algorithm is used to optimize the time of the motion trajectory,which reduces the running time of the robotic arm on the premise of meeting the work requirements.Simulation results show that,compared to similar algorithms,the improved butterfly algorithm is not easily trapped in local optimization and has higher optimization accuracy.The improved butterfly algorithm is applied to trajectory planning,and the run times of the robotic arm is significantly reduced,which can ensure that the robotic arm can the task smoothly complete and efficiently in actual production.

Key words: Robotic arm, Time optimal trajectory planning, Improved BOA, 3-5-3 polynomial

中图分类号: 

  • TP241
[1]VARSHNEY V,KUMAR A,SAXENA T,et al.Design and de-velopment of intellectual robotic arm[C]//2019 6th Interna-tional Conference on Computing for Sustainable Global Development(INDIACom).2019:984-987.
[2]LI L,SHANG J Y,FENG Y L.Review oftrajectory planning of articulated industrial robots[J].Computer Engineering and Applications,2018,54(5):36-50.
[3]WEI B,SHU S H,ZHANG Y,et al.Kinematics analysis and trajectory planning simulation of manipulator based on AUBO-I5[C]//2020 4th Annual International Conference on Data Science and Business Analytics(ICDSBA).2020:72-75.
[4]YUDHA H M,DEWI T,RISMA P,et al.Arm robot manipulat or design and control for trajectory tracking;a review[C]//2018 5th International Conference on Electrical Engineering,Compu-ter Science and Informatics(EECSI).2018:304-309.
[5]MA C Y,ZHANG Y,CHENG S.Time optimal trajectory planning based on redundant manipulator[C]//2021 6th International Conference on Control.Robotics and Cybernetics,2021:125-129.
[6]MEI T X,YANG Y,CHEN J B.et al.Simulation research on motion trajectory of PUMA 560 manipulator based on MATLAB[C]//2019 Chinese Control And Decision Conference(CCDC).2019:4857-4862.
[7]SABARIGIRISH S,MIJA S J.Obstacle avoiding trajectory planning for 5 degree of freedom robot[C]//2016 IEEE 1st International Conference on Power Electronics,Intelligent Control and Energy Systems(ICPEICES).2016:1-5.
[8]FANG S,MA X H,ZHAO Y,et al.Trajectory planning for seven-dof robotic arm based on quintic polynormial[C]//2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC),2019:198-201.
[9]PORAWAGAMA C D,MUNASINGHE S R.Reduced jerk joint space trajectory planning meth-od using 5-3-5 spline for robot manipulators[C]//7th International Conference on Information and Automation for Sustainability.2014:1-6.
[10]WANG T,XIN Z J,MIAO H B,et al.Optimal trajectory planning of grinding robot based on improved whale optimization algorithm[J].Math-ematical Problems in Engineering,2020,2020(4):1-8.
[11]ZHAO J,ZHU X J,SONG T J.Serial manipulator time-jerk op-timal trajectory planning based on hybrid IWOA-PSO algorithm[J].IEEE Access,2022,10:6592-6604.
[12]YU H,MENG Q X,ZHANG J Y,et al.Time-optimal trajectory planning of robot based on i-mproved adaptive genetic algorithm[C]//2018 Chinese Control And Decision Conference.2018:6397-6402.
[13]WANG W J,TAO Q,CAO Y T,et al.Robot time-optimal tra-jectory planning based on improved cuckoo search algorithm[J].IEEE Access,2020,8:86923-86933.
[14]ARORA S,SINGH S.Butterfly optimization algorithm:a novel approach for global optimization[J].Soft Computing,2019,23(3):715-734.
[15]ZHENG J F,ZHAN H W,HUANG W,et al.An overview of the development of Lévy Flight and the application of intelligent optimization algorithms[J].Computer Science,2021,48(2):190-206.
[16]GAO W X,LIU S,XIAO Z Y,et al.Butterfly optimization algorithm for global optimization[J].Computer Application Research,2020,37(10):2966-2970.
[17]MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[18]MIRJALILI S.Moth-flame optimization algorithm:A novel nature-inspired heuristic paradigm[J].Knowledge-Based Systems,2015,89(11):228-249.
[19]GAO M Y,DING P,YANG Y X.Time-optimal traje-ctory planning of industrial robots based on par-ticle swarm optimization[C]//2015 Fifth International Conference on Instrumentation and Measurement,Computer,Communication and Control(IMCCC).2015:1934-1939.
[20]LI G H,WANG Y L.Industrial robot optimal time trajectoryplanning based on genetic algorithm[C]//2019 IEEE International Conference on Mechatronics and Automation(ICMA).2019:136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!