计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221100186-6.doi: 10.11896/jsjkx.221100186
潘立群1, 吴中华1, 洪标2
PAN Liqun1, WU Zhonghua1, HONG Biao2
摘要: 如今,学者们对长序列时间序列问题的预测主要基于类RNN模型,且其中大部分使用的损失函数是传统的均方误差(MSE)。但类RNN模型在预测任务中存在只能捕捉局部信息且计算开销会随着预测序列的增多迅速提升的问题。不仅如此,MSE损失函数无法捕捉长时间序列数据中普遍存在的非线性问题,且自身还存在对异常值敏感和鲁棒性较低的问题。基于以上背景,提出一种完全基于注意力机制的Informer模型,并在模型中使用基于核技巧改进的Kernal-MSE损失函数代替传统的MSE损失函数来解决长序列时间序列预测的问题。在多变量预测多变量的背景下,以3类数据中的8份数据集为例,对比改进后的Informer模型与经典的Informer模型,类RNN模型中的LSTM和GRU模型。结果表明,改进后的Informer模型预测精度更高,且精度的相对提升值随着原始数据量的增大而增大,适用于长序列时间序列预测问题。
中图分类号:
[1]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI Press,2021:11106-11115. [2]ZHOU Z T,LIU L,SONG X,et al.Remaining useful life prediction method of rolling bearing based on Transformer model[J/OL].[2021-08-14].https://doi.org/10.13700/j.bh.1001-5965.2021.0247. [3]LI Y,LIN Y,XIAO T,et al.An efficient transformer decoder with compressed sub-layers[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI Press,2021:13315-13323. [4]WU H,MENG K,FAN D,et al.Multistep short-term windspeed forecasting using transformer[J].Energy,2022,261:125231. [5]ZHOU C H,LIN P Q.Traffic flow prediction method based on multi-channel Transformer[J/OL].[2022-10-28].https://doi.org/10.19734/j.issn.1001-3695.2022.06.0 306. [6]NEYSHABUR B,BHOJANAPALLI S,MCAL-LESTER D,et al.Exploring generalizationin deep learning[C]//31st Confe-rence on Neural Information Processing Systems.Curran Asso-ciates,Inc.,2017:5949-5958. [7]CHEN L,QU H,ZHAO J.Generalized correntropy induced loss function for deep learning[C]//2016 International Joint Confe-rence on Neural Networks.IEEE,2016:1428-1433. [8]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.Association for Computing Machinery,2018:95-104. [9]BANDARA K,BERGMEIR C,HEWAMA-LAGE H.LSTM-MSNet:Leveraging forecasts on sets of related time series with multiple seasonal patterns[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(4):1586-1599. [10]CHEN X,YU R,ULLAH S,et al.A novel loss function of deep learning in wind speed forecasting[J].Energy,2022,238:121808. [11]HOCHREITER S,SCHMIDHUBERJ.Long short-term memory[J].Neural Computer,1997,9(8):1735e80. [12]LIU H,MI X W,LI Y F.Wind speed forecasting method based on deep learning strategy using empirical wavelet transform,long short term memory neural network and Elman neural network[J].Energy Convers Manag,2018,156:498e514. [13]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Conference Learning Phrase Representations Using RNN Encoder-decoder for Statistical Machine Translation.1724-1734. [14]LI S,JIN X,XUAN Y,et al.Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]//33rd Conference on Neural Information Processing Systems.Curran Associates,Inc.,2019:5244-5254. [15]LI H A,ZHOU X F,FANG L S,et al.Multivariable time series prediction method based on space-time map convolution network[J].Computer Application Research,2022,39(12):1-7. [16]WAN C,LI W Z,DING W X,et al.A multivariable time series prediction algorithm based on self evolutionary pre training[J].Journal of Computer Science,2022,45(3):513-525. [17]LIU H X,XIANG M,ZHOU B T,et al.Power load forecasting for long sequence time-series based on informer[J].Journal of Hubei Minzu University(Natural Science Edition),2021,39(3):326-331. [18]MA J W,YAN J H,SUN R W,et al.Prediction model of PM2.5 concentration based on LSTM-GCN[J].Environmental Monitoring in China,2022,38(5):153-160. |
|