计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230800067-7.doi: 10.11896/jsjkx.230800067
李刚1, 宋文2, 陈致远1
LI Gang1, SONG Wen2, CHEN Zhiyuan1
摘要: 船舶交通流量预测是港口智能交通系统的关键技术之一,对港口运输的效率和安全起到至关重要的作用。针对现有预测方法难以有效提取船舶交通流量数据中的时空相关性特征信息的问题,提出了一种基于注意力机制和ConvLSTM的预测方法(ACLN)。ACLN首先通过深度的ConvLSTM构建编码网络,有效提取船舶交通流量数据中的时空相关性特征信息;其次通过注意力机制对提取的时空相关特征信息进行重要性关注,使模型在预测的过程中自动关注更重要的特征信息;最后通过多层的ConvLSTM和CNN构建预测网络,对提取的时空特征信息进行解析并输出预测结果。在真实的港口船舶交通流量数据上验证了所提方法的有效性,实验结果表明,所提方法的预测性能明显优于目前公开的预测方法,能够对一定区域进行有效的长短时预测,具有一定的实用价值。
中图分类号:
[1]YAN X P,LIU C G.Review and prospect for intelligent waterway transportation system [J].CAAI Transactions on Intelligent Systems,2016,11(6):807-817. [2]SUO Y F,CHEN W K,YANG S H,et al.Prediction of ship traf-fic flow based on deep neural network [J].Journal of Jimei University(Natural Science),2020,25(6):430-436. [3]HE W,ZHONG C,SOTELO M A,et al.Short-term vessel traffic flow forecasting by using an improved Kalman model [J].Cluster Computing,2019,22(S4):7907-7916. [4]WANG K,LIU W,CHEN J W,et al.Study on method of ship traffic flow prediction based on VMD and LSTM [J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2022,46(1):177-182. [5]LI X L,XIAO J L,LIU M J.Vessel traffic flow prediction based on the SARIMA model [J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2017,41(2):329-332,337. [6]GUO J,HUANG W,WILLIAMS B M.Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification [J].Transportation Research Part C:Emerging Technologies,2014,43:50-64. [7]WANG R F,CHEN Z Q,LIU Z X.Link prediction in complex networks with syncretic naive Bayes methods [J].CAAI Tran-sactions on Intelligent Systems,2019,14(1):99-107. [8]YANG S S,WU C S,LIU Z,et al.Vessel traffic flow prediction using non-convex low-rank and sparsity constraints [J].Application Research of Computers,2018,35(1):43-47. [9]YAN Z,YU C C,HAN L,et al.Short-term traffic flow forecasting method based on CNN+LSTM [J].Computer Engineering and Design,2019,40(9):2620-2624,2659. [10]HUANG W,SONG G,HONG H,et al.Deep architecture fortraffic flow prediction:deep belief networks with multitask learning [J].IEEE Transactions on Intelligent Transportation Systems,2014,15(5):2191-2201. [11]LAI J H,LIANG S.Short-time traffic flow forecasting method based on BP neural network optimized by ACS [J].Computer Engineering and Applications,2014,50(10):244-248. [12]LI M,HAN D,WANG W.Vessel traffic flow forecasting by RSVR with chaotic cloud simulated annealing genetic algorithm and KPCA [J].Neurocomputing,2015,157:243-255. [13]XIONG T,QI Y,ZHANG W B,et al.Short term traffic flow forecasting method based on temporal-spatial correlation [J].Computer Engineering and Design,2019,40(2):501-507. [14]DENG S,JIA S,CHEN J.Exploring spatial-temporal relationsvia deep convolutional neural networks for traffic flow prediction with incomplete data [J].Applied Soft Computing,2019,78:712-721. [15]ZHANG W,WU P,PENG Y,et al.Roll motion prediction ofunmanned surface vehicle based on coupled CNN and LSTM [J].Future Internet,2019,11(11):243. [16]WANG X,LI J,ZHANG T.A machine-learning model for zonal ship flow prediction using AIS Data:a case study in the south atlantic states region [J].Journal of Marine Science and Engineering.2019,7(12):463. [17]LIU J X,LIU Z D,ZHOU F.A marine traffic flow forecasting model based on generalized regression neural network [J].Navigation of China,2011,34(2):74-77. [18]LI Q Y,JIN J,WANG B.Automatic sleep staging model based on the bi-directional LSTM convolutional network and attention mechanism [J].CAAI Transactions on Intelligent Systems,2022,17(3):523-530. [19]HAO S,LEE D,ZHAO D.Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system [J].Transportation Research Part C:Emerging Technologies,2019,107:287-300. [20]SHI X,CHEN Z,WANG H,et al.Convolutional LSTM network:a machine learning approach for Precipitation nowcasting [J].Advances in Neural Information Proces-sing Systems,2015,28:802-810. [21]MNIH V,HEESS H,GRAVES A,et al.Recurrent models of visual attention [C]//Advances in Neural Information Proces-sing Systems,2014. [22]KALTEH A M.Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform [J].Computers & Geosciences,2013,54:1-8. [23]XIE Z,LIU Q.LSTM networks for vessel traffic flow prediction in inland waterway [C]//IEEE International Conference on Big Data and Smart Computing(BigComp).2018:418-425. [24]ZHOU X,LIU Z,WANG F,et al.Using deep learning to forecast maritime vessel flows [J].Sensors,2020,20(6):1761. |
|