计算机科学 ›› 2023, Vol. 50 ›› Issue (3): 266-275.doi: 10.11896/jsjkx.220300022

• 人工智能 • 上一篇    下一篇

文档增强型知识库问答

冯程程1, 刘派2, 姜琳颖1, 梅笑寒3, 郭贵冰1   

  1. 1 东北大学软件学院 沈阳 110000
    2 西湖大学工学院 杭州 310000
    3 马里兰大学软件学院 马里兰州 MD20740
  • 收稿日期:2022-03-02 修回日期:2022-08-28 出版日期:2023-03-15 发布日期:2023-03-15
  • 通讯作者: 姜琳颖(Jiangly@swc.neu.edu.cn)
  • 作者简介:(fengcc121@163.com)
  • 基金资助:
    国家自然科学基金(61972078);沈阳市科技计划项目(21-108-9-19)

Document-enhanced Question Answering over Knowledge-Bases

FENG Chengcheng1, LIU Pai2, JIANG Linying1, MEI Xiaohan3, GUO Guibing1   

  1. 1 School of Software,Northeastern University,Shenyang 110000,China
    2 School of Engineering,Westlake University,Hangzhou 310000,China
    3 School of Software,University of Maryland,Maryland MD20740,USA
  • Received:2022-03-02 Revised:2022-08-28 Online:2023-03-15 Published:2023-03-15
  • About author:FENG Chengcheng,born in 1996,postgraduate.Her main research interest is natural language processing.
    JIANG Linying,born in 1972,master,professor.Her main research interests include data analysis,natural language processing,embedded system,and information system engineering.
  • Supported by:
    National Natural Science Foundation of China(61972078) and Technology Foundation of Shenyang,China(21-108-9-19).

摘要: 近年来,知识库(Knowledge Base,KB)被广泛应用于问答(Question Answering,QA)任务中。给定自然语言问题,利用知识库为给定问题提供正确答案,被称为KBQA问题。然而,知识库本身可能是不完整的(例如,KB不包含问题的答案或问题中的一些实体和关系),这限制了现有KBQA模型的总体性能。为了解决这个问题,文中提出了一个新的模型,利用文本语料库信息提供额外信息来增强知识库覆盖率和背景信息以增强问题的表示。具体来说,该模型由3个模块组成,即实体和问题表征模块、文档和问题增强表征模块以及答案预测模块。实体和问题表征模块从检索到的知识库子图中学习实体的表示,然后通过融合种子实体信息更新问题表示;文档和问题增强表征模块尝试学习与给定问题相关文档的正确表示,然后通过融合文档信息进一步改进问题表示;最后,答案预测模块根据知识库实体表征、文档表征和更新的问题表征进行答案预测。利用所提方法在WebQuestionsSP数据集上进行了大量的实验,结果表明,与其他方法相比,所提方法可以获得更高的准确性。

关键词: 知识库问答, 协同注意力机制, 端到端, 神经网络, 融合门控函数

Abstract: Recently,knowledge base(KB) has been widely adopted to the task of question answering(QA) to provide a proper answer for a given question,known as the KBQA problem.However,knowledge base itself may be incomplete(e.g.KB does not contain the answer to the question,or some of the entities and relationships in the question),limiting the overall performance of existing KBQA models.To resolve this issue,this paper proposes a new model to leverage textual documents for KBQA task by providing additional answers to enhance knowledge base coverage and background information to enhance the representation of questions.Specifically,the proposed model consists of three modules,namely entity and question representation module,document and enhanced-question representation module and answer prediction module.The first module aims to learn the representations of entities from the retrieved subgraph of knowledge base.Then,the question representation can be updated with the fusion of seed entities.The second module attempts to learn a proper representation of the document that is relevant to the given question.Then,the question representation can be further improved by fusing the document information.Finally,the last module makes an answer prediction based on the information of knowledge base,updated question and documents.Extensive experiments are conducted on the WebQuestionsSP dataset,and the results show that better accuracy can be obtained in comparison with other counterparts.

Key words: KB-QA, Co-attention, End-to-end, Neural network, Fusion gate function

中图分类号: 

  • TP391
[1]ZETTLEMOYER L S,COLLINS M.Learning context-depen-dent mappings from sentences to logical form[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.2009.
[2]KWIATKOWSKI T,CHOI E,ARTZI Y,et al.Scaling semantic parsers with on-the-fly ontology matching[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.2013:1545-1556.
[3]YIH S W,CHANG M W,HE X,et al.Semantic parsing viastaged query graph generation:Question answering with know-ledge base[C]//Proceedings of the Joint Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint Conference on Natural Language Processing of the AFNLP.2015.
[4]YAO X,VAN DURME B.Information extraction over struc-tured data:Question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computa-tional Linguistics(Volume 1:Long Papers).2014:956-966
[5]XU K,REDDY S,FENG Y,et al.Question answering on freebase via relation extraction and textual evidence[C]// Procee-dings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:2326-2336.
[6]SUN H,DHINGRA B,ZAHEER M,et al.Open domain question answering using early fusion of knowledge bases and text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels,Belgium,2018:4231-4242.
[7]XIONG W,YU M,CHANG S,et al.Improving question answering over incomplete kbs with knowledge-aware reader[C]//Annual Meeting of the Association for Computational Linguistics.2019.
[8]OUYANG D T,XIAO J,YE Y X.Distant supervision for relation extraction with weakconstraints of entity pairs[J].Journal of Jilin University(Engineering and Technology Edition),2019,49(3):912-919.
[9]YIH W,HE X,MEEK C.Semantic parsing for single-relation question answering[C]//Proceedings of the 52nd Annual Mee-ting of the Association for Computational Linguistics(Volume 2:Short Papers).2014:643-648.
[10]GOLUB D,HE X.Character-level question answering with attention[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:1598-1607.
[11]YIN W,YU M,XIANG B,et al.Simple question answering byattentive convolutional neural network[J].arXiv:1606.03391,2016.
[12]DAI Z,LI L,XU W.Cfo:Conditional focused neural question answering with large-scale knowledge bases[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016.
[13]WANG G X,HE S Z,LI K,et al.Knowledge Base Question Answering Method Incorporating Fact Text[J].Pattern Recognition and Artificial Intelligence,2021,3(3):267-274.
[14]WU T B,LIU L P,LUO X D,et al.Knowledge Base Question Answering Method Based on Weak Dependency Information[J].Computer Engineering,2021,47(6):76-82.
[15]DONG L,WEI F,ZHOU M,et al.Question answering overfreebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2015:260-269.
[16]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:221-231.
[17]CHEN Y,WU L,ZAKI M J.Bidirectional attentive memorynetworks for question answering over knowledge bases[C]//Proceedings of the 2018 Conference on the North American Chapter of the Association for Computational Linguistics.2019.
[18]CHENG Z,ZHOU X,HE X H,et al.Multi-angle AttentionQuestion Answering Model Fused with Position Embedding[J].Innovation of Science and Technolog,2022,26(9):85-88.
[19]DAS R,ZAHEER M,REDDY S,et al.Question answering on knowledge bases and text using universal schema and memory networks[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics.2017.
[20]LI Z P.Research on Question Answering over Knowledge Bases with External Texts based on Graph Attention Network[D].Guangzhou:South China University of Technology,2020.
[21]HAN J,CHENG B,WANG X.Open domain question answering based on text enhanced knowledge graph with hyperedge infusion[C]//Findings of the Association for Computational Linguistics:EMNLP 2020.2020:1475-1481.
[22]HAVELIWALA T H.Topic-sensitive pagerank:A context-sensitive ranking algorithm for web search[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4):784-796.
[23]CHEN D,FISCH A,WESTON J,et al.Reading wikipedia to answer open-domain questions[C]//Proceedings of the Association for Computational Linguistics(ACL).2017.
[24]SONG L,ZHANG Y,WANG Z,et al.A graph-to-sequencemodel for AMR-to-text generation[C]//Proceedings of the Association for Computational Linguistics(ACL).2018.
[25]XU K,WU L,WANG Z,et al.Graph2seq:Graph to sequence learning with attention-based neural networks[J].arXiv:1804.00823,2018.
[26]LU J,YANG J,BATRA D,et al.Hierarchical Question-Image Co-Attention for Visual Question Answering [C]//Proceedings of the 30th Conference on Neural Information Processing Systems(NIPS).2016.
[27]YIH W,RICHARDSON M,MEEK C,et al.The value of se-mantic parse labeling for knowledge base question answering[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).2016:201-206.
[28]MILLER A,FISCH A,DODGE J,et al.Key-value memory networks for directly reading documents[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing(EMNLP 2016).Austin,Texas,USA,2016:1400-1409.
[29]LIANG C,BERANT J,LE Q,et al.Neural Symbolic Machines:Learning Semantic Parsers on Freebase with Weak Supervision[C]// Proceedings of the 55th Annual Meeting of Association for Computational Linguistics(ACL’17).2017.
[30]SUN H,BEDRAX-WEISS T,COHEN W W.Pullnet:Open domain question answering with iterative retrieval on knowledge bases and text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2019.
[31]SAXENA A,TRIPATHI A,TALUKDAR P.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4498-4507.
[1] 李帅, 徐彬, 韩祎珂, 廖同鑫.
SS-GCN:情感增强和句法增强的方面级情感分析模型
SS-GCN:Aspect-based Sentiment Analysis Model with Affective Enhancement and Syntactic Enhancement
计算机科学, 2023, 50(3): 3-11. https://doi.org/10.11896/jsjkx.220700238
[2] 陈富强, 寇嘉敏, 苏利敏, 李克.
基于图神经网络的多信息优化实体对齐模型
Multi-information Optimized Entity Alignment Model Based on Graph Neural Network
计算机科学, 2023, 50(3): 34-41. https://doi.org/10.11896/jsjkx.220700242
[3] 于健, 赵满坤, 高洁, 王聪源, 李亚蓉, 张文彬.
基于高阶和时序特征的图神经网络社会化推荐算法研究
Study on Graph Neural Networks Social Recommendation Based on High-order and Temporal Features
计算机科学, 2023, 50(3): 49-64. https://doi.org/10.11896/jsjkx.220700108
[4] 李志飞, 赵月, 张龑.
基于表示学习的知识图谱推理研究综述
Survey of Knowledge Graph Reasoning Based on Representation Learning
计算机科学, 2023, 50(3): 94-113. https://doi.org/10.11896/jsjkx.220900136
[5] 饶丹, 时宏伟.
基于深度聚类的航空交通流识别与异常检测研究
Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering
计算机科学, 2023, 50(3): 121-128. https://doi.org/10.11896/jsjkx.220100086
[6] 王晓飞, 樊学强, 李章维.
基于迁移学习和多视图特征融合提高RNA碱基相互作用预测
Improving RNA Base Interactions Prediction Based on Transfer Learning and Multi-view Feature Fusion
计算机科学, 2023, 50(3): 164-172. https://doi.org/10.11896/jsjkx.211200186
[7] 梅鹏程, 杨吉斌, 张强, 黄翔.
一种基于三维卷积的声学事件联合估计方法
Sound Event Joint Estimation Method Based on Three-dimension Convolution
计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259
[8] 胡中源, 薛羽, 查加杰.
演化循环神经网络研究综述
Survey on Evolutionary Recurrent Neural Networks
计算机科学, 2023, 50(3): 254-265. https://doi.org/10.11896/jsjkx.220600007
[9] 环志刚, 蒋国权, 张玉健, 刘浏, 刘姗姗.
门控机制融合多种特征的中文事件共指消解
Employing Gated Mechanism to Incorporate Multi-features into Chinese Event Coreference Resolution
计算机科学, 2023, 50(3): 291-297. https://doi.org/10.11896/jsjkx.220700146
[10] 李海涛, 王瑞敏, 董卫宇, 蒋烈辉.
一种基于GRU的半监督网络流量异常检测方法
Semi-supervised Network Traffic Anomaly Detection Method Based on GRU
计算机科学, 2023, 50(3): 380-390. https://doi.org/10.11896/jsjkx.220100032
[11] 王祥炜, 韩锐, 刘驰.
基于层级化数据记忆池的边缘侧半监督持续学习方法
Hierarchical Memory Pool Based Edge Semi-supervised Continual Learning Method
计算机科学, 2023, 50(2): 23-31. https://doi.org/10.11896/jsjkx.221100133
[12] 章琪, 于双元, 尹鸿峰, 徐保民.
基于图注意力的神经协同过滤社会推荐算法
Neural Collaborative Filtering for Social Recommendation Algorithm Based on Graph Attention
计算机科学, 2023, 50(2): 115-122. https://doi.org/10.11896/jsjkx.211200019
[13] 魏琦, 赵娟.
红外和可见光图像融合算法的研究进展
Research Progress of Infrared and Visible Image Fusion Algorithms
计算机科学, 2023, 50(2): 190-200. https://doi.org/10.11896/jsjkx.220100074
[14] 曹金娟, 钱忠, 李培峰.
基于联合模型的端到端事件可信度识别
End-to-End Event Factuality Identification with Joint Model
计算机科学, 2023, 50(2): 292-299. https://doi.org/10.11896/jsjkx.211200108
[15] 郝敬宇, 文静轩, 刘华锋, 景丽萍, 于剑.
结合全局信息的深度图解耦协同过滤
Deep Disentangled Collaborative Filtering with Graph Global Information
计算机科学, 2023, 50(1): 41-51. https://doi.org/10.11896/jsjkx.220900255
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!