计算机科学 ›› 2023, Vol. 50 ›› Issue (4): 77-87.doi: 10.11896/jsjkx.220300173

• 计算机图形学&多媒体 • 上一篇    下一篇

基于深度学习的视觉多目标跟踪研究综述

伍瀚1, 聂佳浩1, 张照娓1, 何志伟1,2, 高明煜1,2   

  1. 1 杭州电子科技大学电子信息学院 杭州 310018
    2 浙江省装备电子重点实验室 杭州 310018
  • 收稿日期:2022-03-18 修回日期:2022-08-13 出版日期:2023-04-15 发布日期:2023-04-06
  • 通讯作者: 何志伟(zwhe@hdu.edu.cn)
  • 作者简介:(wuhan0326@hdu.edu.cn)
  • 基金资助:
    国家自然科学基金(61571394,62001149);浙江省重点研发项目(2020C03098)

Deep Learning-based Visual Multiple Object Tracking:A Review

WU Han1, NIE Jiahao1, ZHANG Zhaowei1, HE Zhiwei1,2, GAO Mingyu1,2   

  1. 1 College of Electronic Information,Hangzhou Dianzi University,Hangzhou 310018,China
    2 Zhejiang Provincial Key Laboratory of Equipment Electronics,Hangzhou 310018,China
  • Received:2022-03-18 Revised:2022-08-13 Online:2023-04-15 Published:2023-04-06
  • About author:WU Han,born in 1999,postgraduate.His main research interests include computer vision,visual object tracking and image processing.
    HE Zhiwei,born in 1979,Ph.D,professor,Ph.D supervisor,is a member of IEEE.His main research interests include image processing and signal processing.
  • Supported by:
    National Natural Science Foundation of China(61571394,62001149) and Key R&D Program of Zhejiang Pro-vince(2020C03098).

摘要: 多目标跟踪(MOT)旨在从给定视频序列中输出所有目标的运动轨迹并维持各目标的身份。近年来,由于其在学术研究和实际应用中具有巨大潜力,因此受到越来越多的关注并成为计算机视觉的热点研究方向。当前主流的跟踪方法将MOT任务拆分为目标检测、特征提取以及数据关联3个子任务,这种思路已经得到了良好的发展。然而,由于实际跟踪过程中存在遮挡和相似物体干扰等挑战,保持鲁棒跟踪仍是当前的研究难点。为了满足在复杂场景下对多个目标准确、鲁棒、实时跟踪的要求,需要对MOT算法作进一步研究与改进。目前已有关于MOT算法的综述,但仍存在总结不够全面及缺少最新研究成果等问题。因此,首先介绍了MOT的原理及挑战;其次,通过总结最新的研究成果对MOT算法进行了归纳和分析,根据各类算法为完成3个子任务所采用的跟踪范式将其分为三大类,即分离检测与特征提取、联合检测与特征提取及联合检测和跟踪,并且详细说明了各类跟踪算法的主要特征;然后,将所提算法与当前主流算法在常用数据集上进行了对比分析,讨论了当前算法的优缺点及发展趋势,展望了未来的研究方向。

关键词: 多目标跟踪, 计算机视觉, 目标检测, 特征提取, 数据关联

Abstract: Multiple object tracking(MOT)aims to predict trajectories of all targets and maintain their identities from a given video sequence.In recent years,MOT has gained significant attention and become a hot topic in the field of computer vision due to its huge potential in academic research and practical application.Benefiting from the advancement of object detection and re-identification,the current approaches mainly split the MOT task into three subtasks:object detection,re-identification feature extraction,and data association.This idea has achieved remarkable success.However,maintaining robust tracking still remains challenging due to the factors such as occlusion and similar object interference in the tracking process.To meet the requirement of accurate,robust and real-time tracking in complex scenarios,further research and improvement of MOT algorithms are needed.Some review literature on MOT algorithms has been published.However,the existing literatures do not summarize the tracking approaches comprehensively and lack the latest research achievements.In this paper,the principle of MOT is firstly introduced,as well as the challenges in the tracking process.Then,the latest research achievements are summarized and analyzed.According to the tracking paradigm used to complete the three subtasks,the various algorithms are divided into separate detection and embedding,joint detection and embedding,and joint detection and tracking.The main characteristics of various tracking approaches are described.Afterward,the existing mainstream models are compared and analyzed on MOT challenge datasets.Finally,the future research directions are prospected by discussing the advantages and disadvantages of the current algorithms and their development trends.

Key words: Multiple object tracking, Computer vision, Object detection, Feature extraction, Data association

中图分类号: 

  • TP391
[1]GONG X,LE Z C,WANG H,et al.Survey of Data Association Technology in Multi-target Tracking[J].Computer Science,2020,47(10):136-144.
[2]TIAN Y C,DEHGHAN A,SHAH M.On Detection,Data As-sociation and Segmentation for Multi-Target Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(9):2146-2160.
[3]HE Y H,WEI X,HONG X P,et al.Multi-Target Multi-CameraTracking by Tracklet-to-Target Assignment[J].IEEE Transactions on Image Processing,2020,29:5191-5205.
[4]ZHENG Z X,AN G Y,WU D P,et al.Global and Local Know-ledge-Aware Attention Network for Action Recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):334-347.
[5]SUN Z H,CHEN J,CHAO L,et al.A Survey of Multiple Pedestrian Tracking Based on Tracking-by-Detection Framework[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(5):1819-1833.
[6]LUO W H,XING J L,MILAN A,et al.Multiple object tra-cking:A literature review[J].Artificial Intelligence,2021,293:103448.
[7]CIAPARRONE G,SANCHEZ F L,TABIK S,et al.Deep lear-ning in video multi-object tracking:A survey[J].Neurocompu-ting,2020,381:61-88.
[8]EMAMI P,M.PARDALOS P,ELEFTERIADOU L,et al.Machine Learning Methods for Data Association in Multi-Object Tracking[J].ACM Computing Surveys,2020,53(4):1-34.
[9]CAMPLANI M,PAIEMENT A,MIRMEHDI M,et al.Multiple human tracking in RGB-depth data:a survey[J].IET Computer Vision,2017,11(4):265-285.
[10]CAO Z Q,SAI B,LV X.Review of pedestrian tracking:Algorithms and applications[J].Acta Physica Sinica,2020,69(8):41-58.
[11]REN W H,WANG X C,TIAN J D,et al.Tracking-by-Coun-ting:Using Network Flows on Crowd Density Maps for Tra-cking Multiple Targets[J].IEEE Transactions on Image Proces-sing,2021,30:1439-1452.
[12]XIANG J,XU G H,MA C,et al.End-to-End Learning Deep CRF Models for Multi-Object Tracking Deep CRF Models[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(1):275-288.
[13]PENG J L,WANG T,LIN W Y,et al.TPM:Multiple objecttracking with tracklet-plane matching[J].Pattern Recognition,2020,107:107480.
[14]BEWLEY A,GE Z Y,OTT L,et al.Simple Online and Realtime Tracking[C]//IEEE International Conference on Image Processing.2016:3464-3468.
[15]ZHOU H,OUYANG W L,CHENG J,et al.Deep Continuous Conditional Random Fields With Asymmetric Inter-Object Constraints for Online Multi-Object Tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,29(4):1011-1022.
[16]SHAN C B,WEI C B,DENG B,et al.Tracklets PredictingBased Adaptive Graph Tracking[J].arXiv:2010.09015,2020.
[17]GIRBAU A,GIRO-I-NIETO X,RIUS I,et al.Multiple ObjectTracking with Mixture Density Networks for Trajectory Estimation[J].arXiv:2106.10950,2021.
[18]YU F W,LI W B,LI Q Q,et al.POI:Multiple Object Tracking with High Performance Detection and Appearance Feature[C]//European Conference on Computer Vision.2016:36-42.
[19]SON J,BAEK M,CHO M,et al.Multi-Object Tracking with Quadruplet Convolutional Neural Networks[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3786-3795.
[20]LEE S,KIM E.Multiple Object Tracking via Feature Pyramid Siamese Networks[J].IEEE Access,2019,7:8181-8194.
[21]SUN S J,AKHTAR N,SONG H S,et al.Deep Affinity Network for Multiple Object Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(1):104-119.
[22]WOJKE N,BEWLEY A,PAULUS D.Simple Online and Realtime Tracking with a Deep Association Metric[C]//IEEE International Conference on Image Processing.2017:3645-3649.
[23]CHEN L,AI H Z,ZHUANG Z J,et al.Real-Time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification[C]//IEEE International Conference on Multimedia and Expo.2018:1-6.
[24]LI Z,CAI S Z,WANG X Y,et al.Multiple Object Tracking with GRU Association and Kalman Prediction[C]//International Joint Conference on Neural Networks.2021:1-8.
[25]ZHANG Y F,WANG C Y,WANG X G,et al.FairMOT:On the Fairness of Detection and Re-identification in Multiple Object Tracking[J].International Journal of Computer Vision,2021,129(11):3069-3087.
[26]LIU X H,LUO Y C,YAN K D,et al.Part-MOT:A multi-object tracking method with instance part-based embedding[J].IET Image Processing,2021,15(11):2521-2531.
[27]LIANG C,ZHANG Z P,LU Y,et al.Rethinking the competition between detection and ReID in Multi-Object Tracking[J].arXiv:2020.12138,2020.
[28]CHEN D,ZHANG S H,YANG J,et al.Norm-Aware Embedding for Efficient Person Search and Tracking[J].International Journal of Computer Vision,2021,129(11):3154-3168.
[29]WAN X Y,ZHOU S P,WANG J J,et al.Multiple ObjectTracking by Trajectory Map Regression with Temporal Priors Embedding[C]//ACM International Conference on Multimedia.2021:1377-1386.
[30]LIANG C,ZHANG Z P,ZHOU X,et al.One More Check:Ma-king “Fake Background” Be Tracked Again[J].arXiv:2104.09441,2021.
[31]MENG F J,WANG X Q,WANG D,et al.Spatial-Semantic and Temporal Attention Mechanism-Based Online Multi-Object Tracking[J].Sensors,2020,20(6):1653.
[32]ZHANG H Y,HE P Y.Pedestrian Tracking Algorithm Based on Convolutional Block Attention Module and Anchor-free Detection Network[J].Journal of Electronics & Information Technology,2022,44(9):3299-3307.
[33]YU E,LI Z L,HAN S D,et al.RelationTrack:Relation-aware Multiple Object Tracking with Decoupled Representation[J].arXiv:2105.04322,2022.
[34]PENG J L,WANG C A,WAN F B,et al.Chained-Tracker:Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking[C]//European Conference on Computer Vision.2020:145-161.
[35]XU Y H,SEP A,BAN Y T,et al.How To Train Your Deep Multi-Object Tracker[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:6786-6795.
[36]SHUAI B,BERNESHAWI A,LI X Y,et al.SiamMOT:Siamese Multi-Object Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:12372-12382.
[37]PANG J M,QIU L L,LI X,et al.Quasi-Dense Similarity Lear-ning for Multiple Object Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:164-173.
[38]ZHOU X Y,KOLTUN V,KRAHENBUHL P.Tracking Objects as Points[C]//European Conference on Computer Vision.2020:474-490.
[39]PANG B,LI Y Z,ZHANG Y F,et al.TubeTK:Adopting Tubes to Track Multi-Object in a One-Step Training Model[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:12352-12361.
[40]WU J L,CAO J L,SONG L C,et al.Track to Detect and Segment:An Online Multi-Object Tracker[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:6307-6317.
[41]WANG Q,ZHENG Y,PAN P,et al.Multiple Object Tracking With Correlation Learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:3876-3886.
[42]HORNAKOVA A,KAISER T,SWOBODA P,et al.MakingHigher Order MOT Scalable:An Efficient Approximate Solver for Lifted Disjoint Paths[C]//IEEE International Conference on Computer Vision.2021:6330-6340.
[43]WANG Y X,KITANI K,WENG X S,et al.Joint Object Detection and Multi-Object Tracking with Graph Neural Networks[C]//IEEE International Conference on Robotics and Automation.2021:13708-13715.
[44]SUN P Z,CAO J K,JIANG Y,et al.TransTrack:Multiple Object Tracking with Transformer[J].arXiv:2012.15460,2020.
[45]CHU P,WANG J,YOU Q Z,et al.TransMOT:Spatial-Tempo-ral Graph Transformer for Multiple Object Tracking[J].arXiv:2104.00194,2021.
[46]XU Y H,BAN Y T,DELORME G,et al.TransCenter:Transformers with Dense Queries for Multiple-Object Tracking[J].arXiv:2103.15145,2021.
[47]MILAN A,SCHINDLER K,ROTH S.Multi-Target Trackingby Discrete-Continuous Energy Minimization[J].IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2016,38(10):2054-2068.
[48]KUHN H W.The Hungarian Method for the assignment pro-blem[J].Naval Research Logistics Quarterly,2005,52(1):7-21.
[49]HUANG C,WU B,NEVATIA R.Robust object tracking byhierarchical association of detection responses[C]//European Conference on Computer Vision.2008:788-801.
[50]SHU G,DEHGHAN A,OREIFEJ O,et al.Part-based Multiple-Person Tracking with Partial Occlusion Handling[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2012:1815-1821.
[51]BRENDEL W,AMER M,TODOROVIC S.Multi-object Tra-cking as Maximum Weight Independent Set[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2011:1273-1280.
[52]KALMAN R E.A New Approach to Linear Filtering and Prediction Problems[J].Journal of Fluids Engineering,1960,82:35-45.
[53]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[C]//Annual Conference Advances on Neural Information Processing Systems.Montreal,Canada,2015.
[54]FUKUSHIMA K.Neocognitron:a self organizing neural net-work model for a mechanism of pattern recognition unaffected by shift in position[J].Biological cybernetics,1980,36(4):193-202.
[55]SZEGEDY C,LIU W,JIA Y Q,et al.Going Deeper with Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9.
[56]LIU H R,YANG X W,LATECKI L J,et al.Dense Neighborhoods on Affinity Graph[J].International Journal of Computer Vision.2012,98(1):65-82.
[57]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125.
[58]VOIGTLAENDER P,KRAUSE M,OSEP A,et al.MOTS:Multi-Object Tracking and Segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,US,2019:7934-7943.
[59]HE K M,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE/CVF International Conference on Computer Vision.2017:2980-2988.
[60]WANG Z D,ZHENG L,LIU Y X,et al.Towards real-timemulti-object tracking[C]//European Conference on Computer Vision.Berlin:Springer,2020:107-122.
[61]REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018.
[62]KENDALL A,GAL Y,CIPOLLA R.Multi-Task LearningUsing Uncertainty to Weigh Losses for Scene Geometry and Semantics[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:7482-7491.
[63]DUAN K W,BAI S,XIE L X,et al.CenterNet:Keypoint Triplets for Object Detection[C]//IEEE International Conference on Computer Vision.2019:6569-6578.
[64]TIAN Z,SHEN C H,CHEN H,et al.FCOS:Fully Convolutio-nal One-Stage Object Detection[C]//IEEE International Confe-rence on Computer Vision.2019:9626-9635.
[65]DAI J F,QI H Z,XIONG Y W,et al.Deformable Convolutional Networks[C]//IEEE International Conference on Computer Vision.2019:764-773.
[66]YAN Y C,LI J P,QIN J,et al.Efficient Person Search:An Anchor-Free Approach[J].arXiv:2109.00211,2021.
[67]WANG Y T,GONG D H,ZHOU Z,et al.Orthogonal Deep Fea-tures Decomposition for Age-Invariant Face Recognition[C]//European Conference on Computer Vision.2018:764-779.
[68]WOO S H,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//European Conference on Computer Vision.2018:3-19.
[69]GUO S,WANG J Y,WANG X C,et al.Online Multiple Object Tracking With Cross-Task Synergy[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:8136-8145.
[70]VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need[C]//Annual Conference Advances on Neural Information Processing Systems.2017.
[71]BERGMANN P,MEINHARDT T,LEAL-TAIXE L.Tracking without bells and whistles[C]//IEEE International Conference on Computer Vision.2019:941-951.
[72]CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//2020 European Confe-rence on Computer Vision.2020:213-229.
[73]YU C J,MA X,REN J W,et al.Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[C]//European Conference on Computer Vision.2020:507-523.
[714]QIAN Y Q,YANG M,ZHAO X,et al.Oriented Spatial Transformer Network for Pedestrian Detection Using Fish-Eye Ca-mera[J].IEEE Transactions on Multimedia,2020,22(2):421-431.
[75]LEAL-TAIXE L,MILAN A,REID I,et al.MOTChallenge2015:Towards a Benchmark for Multi-Target Tracking[J].ar-Xiv:1504.01942,2015.
[76]DOLLAR P,APPEL R,BELONGIE S,et al.Fast Feature Pyramids for Object Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(8):1532-1545.
[77]MILAN A,LEAL-TAIXE L,REID I,et al.MOT16:A Benchmark for Multi-Object Tracking[J].arXiv:1603.00831,2016.
[78]SADEGHI M A,FORSYTH D.30Hz Object Detection withDPM V5[C]//European Conference on Computer Vision.2014:65-79.
[79]DENDORFER P,OSEP A,MILAN A,et al.MOTChallenge:A Benchmark for Single-Camera Multiple Target Tracking[J].International Journal of Computer Vision,2021,129(4):845-881.
[80]YANG F,CHOI W G,LIN Y Q.Exploit All the Layers:Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:2129-2137.
[81]DENDORFER P,REZATOFIGHI H,MILAN A,et al.MOT20:A benchmark for multi object tracking in crowded scenes[J].arXiv:2003.09003,2020.
[82]DAVE A,KHURANA T,TOKMAKOV P,et al.TAO:ALarge-Scale Benchmark for Tracking Any Object[C]//European Conference on Computer Vision.2020:436-454.
[83]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition.2012:3354-3361.
[84]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The KITTI dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237.
[85]WANG X Y,YANG M,ZHU S H,et al.Regionlets for Generic Object Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(10):2071-2084.
[86]WEN L Y,DU D W,CAI Z W,et al.UA-DETRAC:A newbenchmark and protocol for multi-object detection and tracking[J].Computer Vision and Image Understanding,2020,193:102907.
[87]SUN P,KRETZSCHMAR H,DOTIWALLA X,et al.Scalability in Perception for Autonomous Driving:Waymo Open Dataset[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:2443-2451.
[88]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[89]CAI Z W,SABERIAN M,VASCONCELOS N.Learning Complexity-Aware Cascades for Deep Pedestrian Detection[C]//International Conference on Computer Vision.2014:3361-3369.
[90]WU B,NEVATIA R T.Detection and tracking of multiple,partially occluded humans by Bayesian combination of edgelet based part detectors[J].International Journal of Computer Vision,2007,75(2):247-266.
[91]BERNARDIN K,STIEFELHAGEN R.Evaluating Multiple Object Tracking Performance:The CLEAR MOT Metrics[J].Eura-sip Journal on Image and Video Processing,2008(1):246309.
[92]RISTANI E,SOLERA F,ZOU R,et al.Performance Measures and a Data Set for Multi-target,Multi-camera Tracking[C]//European Conference on Computer Vision.2016:17-35.
[93]LUITEN J,OSEP A,DENDORFER P,et al.HOTA:A Higher Order Metric for Evaluating Multi-object Tracking[J].International Journal of Computer Vision,2021,129(2):548-578.
[94]WU H,NIE J,HE Z,et al.One-Shot Multiple Object Tracking in UAV Videos Using Task-Specific Fine-Grained Features[J].Remote Sensing,2022,14(16):3853.
[95]WANG C Z,BAI X,DU J L.Diffuse Interface Based Unsupervised Images Clustering Algorithm[J].Computer Science,2020,47(5):149-153.
[96]ZHOU T F,LI J W,LI X Y,et al.Target-Aware Object Disco-very and Association for Unsupervised Video Multi-Object Segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:6985-6994.
[97]WU X L,HU W.Attention-based Hot Block and Saliency Pixel Convolutional Neural Network Method for Face Anti-spoofing[J].Computer Science,2021,48(4):316-324.
[98]GUO D Y,SHAO Y Y,CUI Y,et al.Graph Attention Tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9543-9552.
[99]ZHOU H Y,XIANG X Z,WANG X Y,et al.Chained End-to-End Pedestrian Multi-Object Tracking Network with Multi-Feature Fusion[J].Computer Engineering,2022,48(9):305-313.
[1] 刘航, 普园媛, 吕大华, 赵征鹏, 徐丹, 钱文华.
极化自注意力约束颜色溢出的图像自动上色
Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image
计算机科学, 2023, 50(3): 208-215. https://doi.org/10.11896/jsjkx.220100149
[2] 张卫良, 陈秀宏.
跨层融合和感受野扩增的SSD目标检测算法
SSD Object Detection Algorithm with Cross-layer Fusion and Receptive Field Amplification
计算机科学, 2023, 50(3): 231-237. https://doi.org/10.11896/jsjkx.211100281
[3] 陈亮, 王璐, 李生春, 刘昌宏.
基于深度学习的可视化仪表板生成技术研究
Study on Visual Dashboard Generation Technology Based on Deep Learning
计算机科学, 2023, 50(3): 238-245. https://doi.org/10.11896/jsjkx.230100064
[4] 郭楠, 李婧源, 任曦.
基于深度学习的刚体位姿估计方法综述
Survey of Rigid Object Pose Estimation Algorithms Based on Deep Learning
计算机科学, 2023, 50(2): 178-189. https://doi.org/10.11896/jsjkx.211200164
[5] 华杰, 刘学亮, 赵烨.
基于特征融合的小样本目标检测
Few-shot Object Detection Based on Feature Fusion
计算机科学, 2023, 50(2): 209-213. https://doi.org/10.11896/jsjkx.220500153
[6] 商迪, 吕彦锋, 乔红.
受人脑中记忆机制启发的增量目标检测方法
Incremental Object Detection Inspired by Memory Mechanisms in Brain
计算机科学, 2023, 50(2): 267-274. https://doi.org/10.11896/jsjkx.220900212
[7] 蔡肖, 陈志华, 盛斌.
基于移位窗口金字塔Transformer的遥感图像目标检测
SPT:Swin Pyramid Transformer for Object Detection of Remote Sensing
计算机科学, 2023, 50(1): 105-113. https://doi.org/10.11896/jsjkx.211100208
[8] 陈云芳, 陆洋洋, 周鑫, 张伟.
基于互相关注意力的链式帧处理多目标跟踪算法
Multi-object Tracking Based on Cross-correlation Attention and Chained Frames
计算机科学, 2023, 50(1): 131-137. https://doi.org/10.11896/jsjkx.211100097
[9] 荣欢, 钱敏峰, 马廷淮, 孙圣杰.
基于先验知识图谱的多代理被遮挡目标类别推理模型
Novel Class Reasoning Model Towards Covered Area in Given Image Based on InformedKnowledge Graph Reasoning and Multi-agent Collaboration
计算机科学, 2023, 50(1): 243-252. https://doi.org/10.11896/jsjkx.220700112
[10] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[11] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[12] 沈祥培, 丁彦蕊.
多检测器融合的深度相关滤波视频多目标跟踪算法
Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm
计算机科学, 2022, 49(8): 184-190. https://doi.org/10.11896/jsjkx.210600004
[13] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[14] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[15] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!