计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 52-63.doi: 10.11896/jsjkx.221000044
陈冲, 陈杰, 张慧, 蔡磊, 薛亚茹
CHEN Chong, CHEN Jie, ZHANG Hui, CAI Lei, XUE Yaru
摘要: 随着数据量呈爆发式增长,深度学习理论与技术取得突破性进展,深度学习模型在众多分类与预测任务(图像、文本、语音和视频数据等)中表现出色,促进了深度学习的规模化与产业化应用。然而,深度学习模型的高度非线性导致其内部逻辑不明晰,并常常被视为“黑箱”模型,这也限制了其在关键领域(如医疗、金融和自动驾驶等)的应用。因此,研究深度学习的可解释性是非常必要的。首先对深度学习的现状进行简要概述,阐述深度学习可解释性的定义及必要性;其次对深度学习可解释性的研究现状进行分析,从内在可解释模型、基于归因的解释和基于非归因的解释3个角度对解释方法进行概述;然后介绍深度学习可解释性的定性和定量评估指标;最后讨论深度学习可解释性的应用以及未来发展方向。
中图分类号:
[1]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Na-ture,2015,521(7553):436-444. [2]ZHANG Z,XIE Y,XING F,et al.Mdnet:A semantically and visually interpretable medical image diagnosis network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2017:6428-6436. [3]LEE S M,SEO J B,YUN J,et al.Deep learning applications in chest radiography and computed tomography[J].Journal of Thoracic Imaging,2019,34(2):75-85. [4]MONGA V,LI Y,ELDAR Y C.Algorithm unrolling:Interpre-table,efficient deep learning for signal and image processing[J].IEEE Signal Processing Magazine,2021,38(2):18-44. [5]SAHBA A,DAS A,RAD P,et al.Image graph production by dense captioning[C]//2018 World Automation Congress(WAC).New Jersey:IEEE,2018:1-5. [6]ALI M,YOUSUF N,RAHMAN M,et al.Machine translation using deep learning for universal networking language based on their structure[J].International Journal of Machine Learning and Cybernetics,2021,12(8):2365-2376. [7]YU K.Deep Learning for Unsupervised Neural Machine Translation[C]//2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering(ICBASE).New Jersey:IEEE,2021:614-617. [8]GRIGORESCU S,TRASNEA B,COCIAS T,et al.A survey of deep learning techniques for autonomous driving[J].Journal of Field Robotics,2020,37(3):362-386. [9]ARRIETA A B,DÍAZ-RODRÍGUEZ N,DEL SER J,et al.Explainable Artificial Intelligence(XAI):Concepts,taxonomies,opportunities and challenges toward responsible AI[J].Information Fusion,2020,58:82-115. [10]MURDOCH W J,SINGH C,KUMBIER K,et al.Interpretable machine learning:definitions,methods,and applications[J].arXiv:1901.04592,2019. [11]SAMEK W,MONTAVON G,LAPUSCHKIN S,et al.Explaining deep neural networks and beyond:A review of methods and applications[J].Proceedings of the IEEE,2021,109(3):247-278. [12]SU J M,LIU H F,XIANG F T,et al.Survey of interpretation methods for deep neural networks[J].Computer Engineering,2020,46(9):1-15. [13]ZENG C Y,YAN K,WANG Z F,et al.Survey of Interpretability Research on Deep Learning Models[J].Computer Enginee-ring and Application,2021,57(8):1-9. [14]LEI X,LUO X L.Review on interpretability of deep learning[J].Journal of Computer Applications,2022,42(11):3588-3602. [15]LI L M,HOU M R,CHEN K,et al.Survey on interpretability of deep learning[J].Journal of Computer Applications,2022,42(12):3639-3650. [16]DOSHI-VELEZ F,KIM B.Towards a rigorous science of interpretable machine learning[J].arXiv:1702.08608,2017. [17]LIPTON Z C.The mythos of model interpretability:In machine learning,the concept of interpretability is both important and slippery[J].Queue,2018,16(3):31-57. [18]DINGEN D,VAN'T VEER M,HOUTHUIZEN P,et al.Regression Explorer:Interactive exploration of logistic regression models with subgroup analysis[J].IEEE Transactions on Visua-lization and Computer Graphics,2018,25(1):246-255. [19]ZILKE J R,LOZA MENCÍA E,JANSSEN F.Deepred-rule extraction from deep neural networks[C]//International Confe-rence on Discovery Science.Berlin:Springer,2016:457-473. [20]THRUN S.Extracting rules from artificial neural networks with distributed representations[M]//Cambridge:MIT Press,1994:505-512. [21]NGUYEN D T,KASMARIK K E,ABBASS H A.Towards Interpretable Neural Networks:An Exact Transformation to Multi-Class Multivariate Decision Trees[J].arXiv:2003.04675,2020. [22]BENÍTEZ J M,CASTRO J L,REQUENA I.Are artificial neural networks black boxes?[J].IEEE Transactions on neural networks,1997,8(5):1156-1164. [23]YEGANEJOU M,DICK S,MILLER J.Interpretable deep con-volutional fuzzy classifier[J].IEEE Transactions on Fuzzy Systems,2019,28(7):1407-1419. [24]KENENI B M,KAUR D,AL BATAINEH A,et al.Evolvingrule-based explainable artificial intelligence for unmanned aerial vehicles[J].IEEE Access,2019,7:17001-17016. [25]ZHENG S,DING C.A group lasso based sparse KNN classifier[J].Pattern Recognition Letters,2020,131:227-233. [26]SIMONYAN K,VEDALDI A,ZISSERMAN A.Deep insideconvolutional networks:Visualising image classification models and saliency maps[J].arXiv:1312.6034,2013. [27]SHRIKUMAR A,GREENSIDE P,SHCHERBINA A,et al.Not just a black box:Learning important features through propagating activation differences[J].arXiv:1605.01713,2016. [28]ZEILER M D,FERGUS R.Visualizing and understanding con-volutional networks[C]//European Conference on Computer Vision.Berlin:Springer,2014:818-833. [29]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [30]SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:The all convolutional net[J].arXiv:1412.6806,2014. [31]SUNDARARAJAN M,TALY A,YAN Q.Axiomatic attribution for deep networks[C]//International Conference on Machine Learning.New York:PMLR,2017:3319-3328. [32]SMILKOV D,THORAT N,KIM B,et al.Smoothgrad:removing noise by adding noise[J].arXiv:1706.03825,2017. [33]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New Jersey:IEEE,2016:2921-2929. [34]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.Washington:IEEE Computer Society,2017:618-626. [35]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV).New Jersey:IEEE,2018:839-847. [36]BACH S,BINDER A,MONTAVON G,et al.On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J].PLoS One,2015,10(7):1-46. [37]KINDERMANS P-J,SCHÜTT K T,ALBER M,et al.Learning how to explain neural networks:Pattern net and pattern attribution[J].arXiv:1705.05598,2017. [38]DABKOWSKI P,GAL Y.Real time image saliency for blackbox classifiers[C]//Proceeding of the 31st International Conference on Neural Information Processing Systems.Long Beach:Curran Associates Inc,2017:6970-6979. [39]RIBEIRO M T,SINGH S,GUESTRIN C.“Why should I trust you?” Explaining the predictions of any classifier[C]//Procee-dings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144. [40]WANG H,WANG Z,DU M,et al.Score-CAM:Score-weighted visual explanations for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.New Jersey:IEEE,2020:24-25. [41]PETSIUK V,DAS A,SAENKO K.Rise:Randomized inputsampling for explanation of black-box models[J].arXiv:1806.07421,2018. [42]FONG R C,VEDALDI A.Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of the IEEE International Conference on Computer Vision.New Jersey:IEEE,2017:3429-3437. [43]SHAPLEY L S.A value for n-person games[J].Classics in game theory,1952,2(28):307-317. [44]LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[C]//Proceeding of the 31st International Conference on Neural Information Processing Systems.Long Beach:Curran Associates Inc,2017:4768-4777. [45]STRUMBELJ E,KONONENKO I.An efficient explanation ofindividual classifications using game theory[J].The Journal of Machine Learning Research,2010,11:1-18. [46]KIM B,WATTENBERG M,GILMER J,et al.Interpretabilitybeyond feature attribution:Quantitative testing with concept activation vectors(tcav)[C]//International Conference on Machine Learning.New York:PMLR,2018:2668-2677. [47]BIEN J,TIBSHIRANI R.Prototype selection for interpretableclassification[J].The Annals of Applied Statistics,2011,5(4):2403-2424. [48]LI O,LIU H,CHEN C,et al.Deep learning for case-based reasoning through prototypes:A neural network that explains its predictions[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:3530-3537. [49]WARGNIER-DAUCHELLE V,GRENIER T,DURAND-DU-BIEF F,et al.A more interpretable classifier for multiple sclerosis[C]//2021 IEEE 18th International Symposium on Biome-dical Imaging(ISBI).New Jersey:IEEE,2021:1062-1066. [50]CHEN C,LI O,TAO D,et al.This looks like that:deep learning for interpretable image recognition[C]//Proceeding of the 33rd International Conference on Neural Information Processing Systems.Vancouver:Curran Associates Inc,2019:8930-8941. [51]KIM E,KIM S,SEO M,et al.XProtoNet:diagnosis in chest radiography with global and local explanations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2021:15719-15728. [52]WACHTER S,MITTELSTADT B,RUSSELL C.Counterfa-ctual explanations without opening the black box:Automated decisions and the GDPR[J].Harvard Journal of Law & Technology,2017,31(2):841. [53]MOTHILAL R K,SHARMA A,TAN C.Explaining machine learning classifiers through diverse counterfactual explanations[C]//Proceedings of the 2020 Conference on Fairness,Accoun-tability,and Transparency.2020:607-617. [54]SHARMA S,HENDERSON J,GHOSH J.Certifai:Counterfactual explanations for robustness,transparency,interpretability,and fairness of artificial intelligence models[J].arXiv:1905.07857,2019. [55]LUONG M T,PHAM H,MANNING C D.Effective approaches to attention-based neural machine translation[J].arXiv:1508.04025,2015. [56]STAHLBERG F,SAUNDERS D,BYRNE B.An operation sequence model for explainable neural machine translation[J].arXiv:1808.09688,2018. [57]GHADER H,MONZ C.What does attention in neural machine translation pay attention to?[J].arXiv:1710.03348,2017. [58]MORI K,FUKUI H,MURASE T,et al.Visual explanation by attention branch network for end-to-end learning-based self-driving[C]//2019 IEEE Intelligent Vehicles Symposium(IV).New Jersey:IEEE,2019:1577-1582. [59]WEI X,GALES M J,KNILL K M.Analysing bias in spoken language assessment using concept activation vectors[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).New Jersey:IEEE,2021:7753-7757. [60]GRAZIANI M,ANDREARCZYK V,MÜLLER H.Under-standing and Interpreting Machine Learning in Medical Image Computing Applications[M]//New York:Springer,2018:124-132. [61]ZHAI Z,ORTEGA J F M,MARTÍNEZ N L,et al.An efficient case retrieval algorithm for agricultural case-based reasoning systems,with consideration of case base maintenance[J].Agriculture,2020,10(9):387. [62]ZHU P,OGINO M.Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support[M]//New York:Springer,2019:39-47. [63]KARPATHY A,LI F F.Deep visual-semantic alignments for generating image descriptions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3128-3137. [64]LEE H,KIM S T,RO Y M.Interpretability of machine intelligence in medical image computing and multimodal learning for clinical decision support[M].New York:Springer,2019:21-29. [65]OVIEDO F,REN Z,SUN S,et al.Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks[J].NPJ Computational Mate-rials,2019,5(1):1-9. [66]ADEBAYO J,GILMER J,MUELLY M,et al.Sanity checks for saliency maps[C]//Proceeding of the 32nd International Conference on Neural Information Processing Systems.Montréal:Curran Associates Inc,2018:9525-9536. [67]YEH C K,HSIEH C Y,SUGGALA A,et al.On the(in) fidelityand sensitivity of explanations[C]//Proceeding of the 33rd International Conference on Neural Information Processing Systems.Vancouver:Curran Associates Inc,2019:10967-10978. [68]ANCONA M,CEOLINI E,ÖZTIRELI C,et al.Towards better understanding of gradient-based attribution methods for deep neural networks[J].arXiv:1711.06104,2017. [69]NAM W J,GUR S,CHOI J,et al.Relative attributing propagation:Interpreting the comparative contributions of individual units in deep neural networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2020:2501-2508. [70]JAKAB T,GUPTA A,BILEN H,et al.Self-supervised learning of interpretable keypoints from unlabelled videos[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2020:8787-8797. [71]ZHANG J,BARGAL S A,LIN Z,et al.Top-down neural attention by excitation backprop[J].International Journal of Computer Vision,2018,126(10):1084-1102. [72]LIN C Y.Rouge:A package for automatic evaluation of summaries[C]//Text summarization branches out.2004:74-81. [73]ALVAREZ-MELIS D,JAAKKOLA T.Towards robust inter-pretability with self-explaining neural networks[C]//Procee-dings of the 32nd International Conference on Neural Information Processing Systems.2018:7786-7795. [74]CHU L,HU X,HU J,et al.Exact and consistent interpretation for piecewise linear neural networks:A closed form solution[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1244-1253. [75]LAKKARAJU H,ARSOV N,BASTANI O.Robust and stable black box explanations[C]//International Conference on Machine Learning.New York:PMLR,2020:5628-5638. [76]AFSHAR P,PLATANIOTIS K N,MOHAMMADI A.Capsule networks' interpretability for brain tumor classification via radiomics analyses[C]//2019 IEEE International Conference on Image Processing(ICIP).New Jersey:IEEE,2019:3816-3820. [77]WU J,ZHOU B,PECK D,et al.Deepminer:Discovering inter-pretable representations for mammogram classification and explanation[J].arXiv:1805.12323,2018. [78]WANG Y,FENG C,GUO C,et al.Solving the sparsity problem in recommendations via cross-domain item embedding based on co-clustering[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.2019:717-725. [79]EL-SAPPAGH S,ALONSO J M,ISLAM S,et al.A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease[J].Scientific reports,2021,11(1):1-26. [80]CHEN J H,CHEN S Y C,TSAI Y C,et al.Explainable deep convolutional candlestick learner[J].arXiv:2001.02767,2020. [81]HAN M,KIM J.Joint banknote recognition and counterfeit detection using explainable artificial intelligence[J].Sensors,2019,19(16):3607. [82]MÜLLER J M.Comparing Technology Acceptance for Autonomous Vehicles,Battery Electric Vehicles,and Car Sharing-A Study across Europe,China,and North America[J].Sustai-nability,2019,11(16):4333. [83]BOJARSKI M,CHOROMANSKA A,CHOROMANSKI K,et al.Visualbackprop:visualizing cnns for autonomous driving[J].arXiv:1611.05418,2016. [84]ZENG W,LUO W,SUO S,et al.End-to-end interpretable neural motion planner[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.New Jersey:IEEE,2019:8660-8669. [85]KIM J,ROHRBACH A,AKATA Z,et al.Toward explainable and advisable model for self-driving cars[J].Applied AI Letters,2021,2(4):1-13. [86]OMEIZA D,WEB H,JIROTKA M,et al.Towards accountability:providing intelligible explanations in autonomous driving[C]//2021 IEEE Intelligent Vehicles Symposium(IV).New Jersey:IEEE,2021:231-237. [87]LIGHTBOURNE J.Damned lies & criminal sentencing usingevidence-based tools[J].Duke Law & Technology Review,2016,15:327. [88]TAN S,CARUANA R,HOOKER G,et al.Distill-and-compare:Auditing black-box models using transparent model distillation[C]//Proceedings of the 2018 AAAI/ACM Conference on AI,Ethics,and Society.2018:303-310. [89]BERK R A,BLEICH J.Statistical procedures for forecastingcriminal behavior:A comparative assessment[J].Criminology &Pubulic Pollcy,2013,12(3):511. [90]SUN Z,FAN C,HAN Q,et al.Self-explaining structures im-prove nlp models[J].arXiv:2012.01786,2020. [91]BERTSIMAS D,DELARUE A,JAILLET P,et al.The price of interpretability[J].arXiv:1907.03419,2019. |
|