计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000061-7.doi: 10.11896/jsjkx.231000061

• 图像处理&多媒体技术 • 上一篇    下一篇

眼底视网膜血管图像的自动分割方法研究

赵艳丽1,2, 邢义通2, 李小敏2, 宋彩2, 王培培2   

  1. 1 东北大学计算机科学与工程学院 沈阳 110819
    2 宁夏理工学院电气信息工程学院 宁夏 石嘴山 753000
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 邢义通(895628164@qq.com)
  • 作者简介:(zhaoyanlimail@126.com)
  • 基金资助:
    宁夏自然科学基金(2023AAC03365)

Study on Automatic Segmentation Method of Retinal Blood Vessel Images

ZHAO Yanli1,2, XING Yitong2, LI Xiaomin2, SONG Cai2, WANG Peipei2   

  1. 1 School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China
    2 School of Electrical Information Engineering,Ningxia Institute of Science and Technology,Shizuishan,Ningxia 753000,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:ZHAO Yanli,born in 1986,doctoral candidate,lecturer.Her main research interests include computer vision and medical image-assisted diagnosis.
    XING Yitong,born in 1989,doctoral candidate,lecturer.His main research interests include deep learning and fault diagnosis.
  • Supported by:
    Natural Science Foundation of Ningxia Province(2023AAC03365).

摘要: 随着计算机科学技术的快速发展,数字图像处理已被广泛用于医学辅助诊断中。鉴于人体健康状态与视网膜的血管管径、走向及分布紧密关联,视网膜图像评估已成为医生诊断的关键环节。然而,传统手工分割视网膜血管比较耗时且结果可复现性较差,已不适应当前需求。基于此,提出了一种基于图像处理的视网膜血管自动分割算法。该算法首先采用RGB彩色模型、直方图均衡化以及形态学方法对视网膜图像进行增强预处理,其次选用大津阈值法对图像的主干血管进行分割提取,之后通过高斯匹配滤波来动态调整阈值以实现小血管的分割,然后将分割后的主干及细小血管图像进行合并及优化,最后利用DRIVE图像库中的20张图像对该算法的性能进行了评估。结果表明,所提出的算法在准确度、灵敏度、特异度指标上分别达到了96.2%,77.3%,97.9%,从而验证了该算法的有效性和可靠性。

关键词: 视网膜图像, 血管分割, 图像预处理, 大津阈值, 高斯滤波器

Abstract: With the rapid advancement of computer science and technology,digital image processing is widely used in medical diagnostics.Due to the close correlation between human health and retinal vascular characteristics,evaluating retinal images has become crucial for medical diagnoses.Traditional manual retinal vessel segmentation is time-consuming and lacks reproducibility,no longer meeting current demands.Consequently,this paper introduces an automatic retinal vessel segmentation algorithm.Firstly,it uses RGB color model,histogram equalization and morphological methods to enhance the preprocessing of the retinal image.Secondly,the Otsu threshold method is used to segment and extract the main blood vessels of the image,and then the threshold is dynamically adjusted through Gaussian matching filtering to realize the segmentation of small blood vessels,and then merge and optimize the segmented main trunk and small blood vessel images.Finally,the performance of the proposed algorithm is assessed using 20 images from the DRIVE image database,demonstrating an average accuracy,sensitivity,and specificity of 96.2%,77.3%,and 97.9%,respectively,affirming its effectiveness and reliability.

Key words: Retinal images, Vascular segmentation, Image preprocessing, OTSU threshold, Gaussian filter

中图分类号: 

  • TP391
[1]KHAN K B,KHALIQ A A,JALIL A,et al.A review of retinal blood vessels extraction techniques:challenges,taxonomy,and future trends[J].Pattern Analysis and Applications,2019,22:767-802.
[2]TIAN F,LI Y,WANG J,et al.Blood vessel segmentation offundus retinal images based on improved frangi and mathematical morphology[J].Computational and Mathematical Methods in Medicine,2021,2021:1-11.
[3]BHARKAD S.Automatic segmentation of optic disk in retinal images[J].Biomedical Signal Processing and Control,2017,31:483-498.
[4]ORUJOV F,MASKELIUNAS R,DAMASEVICIUS R,et al.Fuzzy based image edge detection algorithm for blood vessel detection in retinal images[J].Applied Soft Computing,2020,94:106452.
[5]WANG W,ZHANG J,WU W,et al.An automatic approach for retinal vessel segmentation by multi-scale morphology and seed point tracking[J].Journal of Medical Imaging and Health Informatics,2018,8(2):262-274.
[6]WANG W,WANG W,HU Z.Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension[J].IET Image Processing,2019,13(13):2538-2547.
[7]SHUKLA A K,PANDEY R K,PACHORI R B.A fractional fil-ter based efficient algorithm for retinal blood vessel segmentation[J].Biomedical Signal Processing and Control,2020,59:101883.
[8]IMANI E,JAVIDI M,POURREZA H R.Improvement of retinal blood vessel detection using morphological component analysis[J].Computer Methods and Programs in Biomedicine,2015,118(3):263-279.
[9]REHMAN A,HAROUNI M,KARIMI M,et al.Microscopicretinal blood vessels detection and segmentation using support vector machine and K-nearest neighbors[J].Microscopy research and technique,2022,85(5):1899-1914.
[10]KHAN T M,ROBLES-KELLY A,NAQVI S S.A semantically flexible feature fusion network for retinal vessel segmentation[C]//Neural Information Processing:27th International Confe-rence(ICONIP 2020).Bangkok,Thailand,Part IV 27.Springer International Publishing,2020:159-167.
[11]WANG S,YIN Y,CAO G,et al.Hierarchical retinal blood ves-sel segmentation based on feature and ensemble learning [J].Neurcomputing,2015,149:708-717.
[12]PATHAN S,KUMAR P,PAI R M,et al.Automated segmentation and classifcation of retinal features for glaucoma diagnosis[J].Biomedical Signal Processing and Control,2021,63:102244.
[13]ABDULSAHIB A A,MAHMOUD M A,ARIS H,et al.An automated image segmentation and useful feature extraction algorithm for retinal blood vessels in fundus images[J].Electronics,2022,11(9):1295.
[14]DASH S,SENAPATI M R.Enhancing detection of retinal blood vessels by combined approach of DWT,Tyler Coye and Gamma correction[J].Biomedical Signal Processing and Control,2020,57:101740.
[15]DONG L,ZHANG W,XU W.Underwater image enhancement via integrated RGB and LAB color models[J].Signal Processing:Image Communication,2022,104:116684.
[16]DHAL K G,DAS A,RAY S,et al.Histogram equalization va-riants as optimization problems:a review[J].Archives of Computational Methods in Engineering,2021,28:1471-1496.
[17]ROMAN J C M,LEGAL-AYALA H,NOGUERA J L V.Top-hat transform for enhancement of aerial thermal images[C]//2017 30th SIBGRAPI Conference on Graphics,Patterns and Images(SIBGRAPI).IEEE,2017:277-284.
[18]CHEN B,ZHANG X,WANG R,et al.Detect concrete cracks based on OTSU algorithm with differential image[J].The Journal of Engineering,2019,2019(23):9088-9091.
[19]LESTARI T,LUTHFI A.Retinal blood vessel segmentationusing Gaussian filter[C]//Journal of Physics:Conference Series.IOP Publishing,2019,1376(1):012023.
[20]JANANI P,PREMALADHA J,RAVICHANDRAN K S.Image enhancement techniques:A study[J].Indian Journal of Science and Technology,2015,8(22):1-12.
[21]UNNIKRISHNAN R,PANTOFARU C,HEBERT M.Towardobjective evaluation of image segmentation algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):929-944.
[22]SHABANI M,POURGHASSEM H.An active contour modelusing matched filter and Hessian matrix for retinal vessels segmentation[J].Turkish Journal of Electrical Engineering and Computer Sciences,2022,30(1):295-311.
[23]CRUZ-ACEVES I,OLOUMI F,RANGAYYAN R M,et al.Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization[J].Biomedical Signal Processing and Control,2016,25:76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!