计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 293-305.doi: 10.11896/jsjkx.230200121
杨秀文1,2,3, 崔允贺1,2,3, 钱清4, 郭春1,2,3, 申国伟1,2,3
YANG Xiuwen1,2,3, CUI Yunhe1,2,3, QIAN Qing4, GUO Chun1,2,3, SHEN Guowei1,2,3
摘要: 边缘计算(Edge Computing,EC)将计算、存储等资源部署在网络边缘,以满足业务对时延和能耗的要求。计算卸载是EC中的关键技术之一。现有的计算卸载方法在估计任务排队时延时使用M/M/1/∞/∞/FCFS或M/M/n/∞/∞/FCFS排队模型,未考虑高时延敏感型任务的优先执行问题,使得一些对时延要求不敏感的计算任务长期占用计算资源,导致系统的时延开销过大。此外,现有的经验重放方法大多采用随机采样方式,该方式不能区分经验的优劣,造成经验利用率低,神经网络收敛速度慢。基于确定性策略深度强化学习(Deep Reinforcement Learning,DRL)的计算卸载方法存在智能体对环境的探索能力弱和鲁棒性低等问题,降低了求解计算卸载问题的精度。为解决以上问题,考虑边缘计算中多任务移动设备、多边缘服务器的计算卸载场景,以最小化系统时延和能耗联合开销为目标,研究任务调度与卸载决策问题,并提出了基于非抢占式优先排队和优先经验重放DRL的计算卸载方法(Computation Offloading qUeuing pRioritIzed Experience Replay DRL,COURIER)。COURIER针对任务调度问题,设计了非抢占式优先排队模型(M/M/n/∞/∞/NPR)以优化任务的排队时延;针对卸载决策问题,基于软演员-评论家(Soft Actor Critic,SAC)提出了优先经验重放SAC的卸载决策机制,该机制在目标函数中加入信息熵,使智能体采取随机策略,同时优化机制中的经验采样方式以加快网络的收敛速度。仿真实验结果表明,COURIER能有效降低EC系统时延和能耗联合开销。
中图分类号:
[1]SPINELLIF,MANCUSO V.Toward enabled industrial verticals in 5G:A survey on MEC-based approaches to provisioning and flexibility[J].IEEE Communications Surveys & Tutorials,2020,23(1):596-630. [2]SATYANARAYANAN M.The emergence of edge computing[J].Computer,2017,50(1):30-39. [3]MIAO W W,WANG C J,ZENG Z,et al.An elastic resource scheduling algorithm for online applications from multiple IoT agents[J].Journal of Chongqing University of Technology(Natural Science),2022,36(2):151-161. [4]ZHANG J,ZHOU Z,LI S,et al.Hybrid computation offloading for smart home automation in mobile cloud computing[J].Personal and Ubiquitous Computing,2018,22:121-134. [5]MOLOKOMMED N,ONUMANYI A J,ABU-MAHFOUZ AM.Edge intelligence in Smart Grids:A survey on architectures,offloading models,cyber security measures,and challenges[J].Journal of Sensor and Actuator Networks,2022,11(3):47. [6]YOUSEFPOURA,PATIL A,ISHIGAKI G,et al.Fogplan:Alightweight qos-aware dynamic fog service provisioning framework[J].IEEE Internet of Things Journal,2019,6(3):5080-5096. [7]XU X,HUANG Q,YIN X,et al.Intelligent offloading for colla-borative smart city services in edge computing[J].IEEE Internet of Things Journal,2020,7(9):7919-7927. [8]XUE J,WANG Z,ZHANG Y,et al.Task allocation optimiza-tion scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks[J].Mobile Information Systems,2020,2020:1-12. [9]KUANG Z F,CHEN Q L.Multi-user Edge Computing Task off-loading Scheduling and Resource Allocation Based on Deep Reinforcement Learning[J].Chinese Journal of Computers,2022,45(2):812-824. [10]WANG Y,GE H,FENG A,et al.Computation offloading stra-tegy based on deep reinforcement learning in cloud-assisted mobile edge computing[C]//2020 IEEE 5th International Confe-rence on Cloud Computing and Big Data Analytics(ICCCBDA).IEEE,2020:108-113. [11]DAI Y,ZHANG K,MAHARJIA S,et al.Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J].IEEE Transactions on Vehicular Technology,2020,69(10):12175-12186. [12]HUANG L,FENG X,ZHANG C,et al.Deep reinforcementlearning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing[J].Digital Communications and Networks,2019,5(1):10-17. [13]LV J,XIONG J,GUO H,et al.Joint computation offloading and resource configuration in ultra-dense edge computing networks:A deep reinforcement learning solution[C]//2019 IEEE 90th Vehicular Technology Conference(VTC2019-Fall).IEEE,2019:1-5. [14]ZHOU H,JIANG K,LIU X,et al.Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J].IEEE Internet of Things Journal,2021,9(2):1517-1530. [15]LITTLE J D C,GRAVES S C.Little's law[J].Building Intuition:Insights from Basic Operations Management Models and Principles,2008,115:81-100. [16]HAARNOJA T,ZHOU A,ABBEEL P,et al.Soft actor-critic:Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International Conference on Machine Learning.PMLR,2018:1861-1870. [17]ZENG M,HAO W,DOBRE O A,et al.Massive MIMO-assisted mobile edge computing:Exciting possibilities for computation offloading[J].IEEE Vehicular Technology Magazine,2020,15(2):31-38. [18]LIU K H,LIAO W.Intelligent offloading for multi-access edge computing:A new actor-critic approach[C]//2020 IEEE International Conference on Communications(ICC 2020).IEEE,2020:1-6. |
|