计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 293-305.doi: 10.11896/jsjkx.230200121

• 计算机网络 • 上一篇    下一篇

COURIER:基于非抢占式优先排队和优先经验重放DRL的边缘计算任务调度与卸载方法

杨秀文1,2,3, 崔允贺1,2,3, 钱清4, 郭春1,2,3, 申国伟1,2,3   

  1. 1 贵州大学计算机科学与技术学院 贵阳 550025
    2 省部共建公共大数据国家重点实验室 贵阳 550025
    3 文本计算与认知智能教育部工程研究中心 贵阳 550025
    4 贵州财经大学信息学院 贵阳 550000
  • 收稿日期:2023-02-17 修回日期:2023-07-29 出版日期:2024-05-15 发布日期:2024-05-08
  • 通讯作者: 崔允贺(yhcui@gzu.edu.cn)
  • 作者简介:(714384330@qq.com)
  • 基金资助:
    国家自然科学基金(62102111);贵州省科技计划项目([2020]1 Y267,黔科合重大专项字[2024]003号);贵州省教育厅自然科学研究项目([2021136]);贵州大学引进人才项目((2019)52)

COURIER:Edge Computing Task Scheduling and Offloading Method Based on Non-preemptivePriorities Queuing and Prioritized Experience Replay DRL

YANG Xiuwen1,2,3, CUI Yunhe1,2,3, QIAN Qing4, GUO Chun1,2,3, SHEN Guowei1,2,3   

  1. 1 College of Computer Science and Technology,Guizhou University,Guiyang 550025,China
    2 State Key Laboratory of Public Big Data,Guiyang 550025,China
    3 Engineering Research Center of Text Computing & Cognitive Intelligence,Ministry of Education,Guiyang 550025,China
    4 School of Information,Guizhou University of Finance and Economics,Guiyang 550000,China
  • Received:2023-02-17 Revised:2023-07-29 Online:2024-05-15 Published:2024-05-08
  • About author:YANG Xiuwen,born in 1994,postgra-duate,is a member of CCF(No.T4489).His main research interests include computational offloading and deep reinforcement learning.
    CUI Yunhe,born in 1987,Ph.D,asso-ciate professor,is a member of CCF(No.F3600M).His main research interests include edge computing,network security,software-defined networks,data center networks and network telemetry.
  • Supported by:
    National Natural Science Foundation of China(62102111),Guizhou Provincial Science and Technology Plan([2020]1Y267,Qian Ke He Zhongda Zhuanxiang Zi[2024]003),Natural Science Research Project of Education Department of Guizhou Province([2021136]) and Scientific Research Foundation for Introduced Talents of Guizhou University((2019)52).

摘要: 边缘计算(Edge Computing,EC)将计算、存储等资源部署在网络边缘,以满足业务对时延和能耗的要求。计算卸载是EC中的关键技术之一。现有的计算卸载方法在估计任务排队时延时使用M/M/1/∞/∞/FCFS或M/M/n/∞/∞/FCFS排队模型,未考虑高时延敏感型任务的优先执行问题,使得一些对时延要求不敏感的计算任务长期占用计算资源,导致系统的时延开销过大。此外,现有的经验重放方法大多采用随机采样方式,该方式不能区分经验的优劣,造成经验利用率低,神经网络收敛速度慢。基于确定性策略深度强化学习(Deep Reinforcement Learning,DRL)的计算卸载方法存在智能体对环境的探索能力弱和鲁棒性低等问题,降低了求解计算卸载问题的精度。为解决以上问题,考虑边缘计算中多任务移动设备、多边缘服务器的计算卸载场景,以最小化系统时延和能耗联合开销为目标,研究任务调度与卸载决策问题,并提出了基于非抢占式优先排队和优先经验重放DRL的计算卸载方法(Computation Offloading qUeuing pRioritIzed Experience Replay DRL,COURIER)。COURIER针对任务调度问题,设计了非抢占式优先排队模型(M/M/n/∞/∞/NPR)以优化任务的排队时延;针对卸载决策问题,基于软演员-评论家(Soft Actor Critic,SAC)提出了优先经验重放SAC的卸载决策机制,该机制在目标函数中加入信息熵,使智能体采取随机策略,同时优化机制中的经验采样方式以加快网络的收敛速度。仿真实验结果表明,COURIER能有效降低EC系统时延和能耗联合开销。

关键词: 边缘计算, 计算卸载, 非抢占式优先排队, 信息熵, 深度强化学习, 优先经验重放

Abstract: Edge computing(EC) deploy a large number of computing and storage resources at the edge of the network to meet requirements on latency and power consumption of tasks.Computing offloading is one of the key technologies in EC.When estimating the delay of task queuing,the existing computation offloading methods usually use M/M/1/∞/∞/FCFS or M/M/n/∞/∞/FCFS models.Without considering the priority of high delay sensitive tasks,these methods cause some computation tasks that do not require sensitive delay always occupy the computation resources,increasing the delay cost of these methods.Meanwhile,most of the existing playback methods use random sampling to replay experience,which cannot distinguish the pros and cons of expe-rience,resulting in low experience utilization and slow neural network convergence.At last,the deterministic policy deep reinforcement learning(DRL) based on computational offloading methods have problems,such as weak ability of exploring environment,low robustness and low experience utilization rate,which reduces the accuracy of solving computational unload problem.To solve the above problems,considering the multi-task mobile device and multi-edge server computing offload scenarios,aims to minimize the system delay and energy consumption,study task scheduling and offloading decision-making problems,and computation offloading qUeuing and pRioritIzed experience replay DRL(COURIER) is proposed.COURIER first designs a non-preemptive priority queuing model(M/M/n/∞/∞/NPR) to optimize the queuing delay of tasks.Then,it proposes a maximum entropy deep reinforcement learning algorithm based on prioritized experience replay.For the offloading decision problem,an offloading decision mechanism of priority experience replay SAC is proposed,based on soft actor-critic(SAC) algorithm.In this mechanism,information entropy is added to the objective function to make the agent adopt random strategy,and the empirical sampling me-thod is optimized to accelerate the convergence rate of the network.Simulation results show that COURIER can effectively reduce system delay and energy consumption.

Key words: Edge computing, Computing offloading, Non-preemptive priority queuing, Information entropy, Deep reinforcement learning, Priority experience replay

中图分类号: 

  • TP391
[1]SPINELLIF,MANCUSO V.Toward enabled industrial verticals in 5G:A survey on MEC-based approaches to provisioning and flexibility[J].IEEE Communications Surveys & Tutorials,2020,23(1):596-630.
[2]SATYANARAYANAN M.The emergence of edge computing[J].Computer,2017,50(1):30-39.
[3]MIAO W W,WANG C J,ZENG Z,et al.An elastic resource scheduling algorithm for online applications from multiple IoT agents[J].Journal of Chongqing University of Technology(Natural Science),2022,36(2):151-161.
[4]ZHANG J,ZHOU Z,LI S,et al.Hybrid computation offloading for smart home automation in mobile cloud computing[J].Personal and Ubiquitous Computing,2018,22:121-134.
[5]MOLOKOMMED N,ONUMANYI A J,ABU-MAHFOUZ AM.Edge intelligence in Smart Grids:A survey on architectures,offloading models,cyber security measures,and challenges[J].Journal of Sensor and Actuator Networks,2022,11(3):47.
[6]YOUSEFPOURA,PATIL A,ISHIGAKI G,et al.Fogplan:Alightweight qos-aware dynamic fog service provisioning framework[J].IEEE Internet of Things Journal,2019,6(3):5080-5096.
[7]XU X,HUANG Q,YIN X,et al.Intelligent offloading for colla-borative smart city services in edge computing[J].IEEE Internet of Things Journal,2020,7(9):7919-7927.
[8]XUE J,WANG Z,ZHANG Y,et al.Task allocation optimiza-tion scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks[J].Mobile Information Systems,2020,2020:1-12.
[9]KUANG Z F,CHEN Q L.Multi-user Edge Computing Task off-loading Scheduling and Resource Allocation Based on Deep Reinforcement Learning[J].Chinese Journal of Computers,2022,45(2):812-824.
[10]WANG Y,GE H,FENG A,et al.Computation offloading stra-tegy based on deep reinforcement learning in cloud-assisted mobile edge computing[C]//2020 IEEE 5th International Confe-rence on Cloud Computing and Big Data Analytics(ICCCBDA).IEEE,2020:108-113.
[11]DAI Y,ZHANG K,MAHARJIA S,et al.Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J].IEEE Transactions on Vehicular Technology,2020,69(10):12175-12186.
[12]HUANG L,FENG X,ZHANG C,et al.Deep reinforcementlearning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing[J].Digital Communications and Networks,2019,5(1):10-17.
[13]LV J,XIONG J,GUO H,et al.Joint computation offloading and resource configuration in ultra-dense edge computing networks:A deep reinforcement learning solution[C]//2019 IEEE 90th Vehicular Technology Conference(VTC2019-Fall).IEEE,2019:1-5.
[14]ZHOU H,JIANG K,LIU X,et al.Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J].IEEE Internet of Things Journal,2021,9(2):1517-1530.
[15]LITTLE J D C,GRAVES S C.Little's law[J].Building Intuition:Insights from Basic Operations Management Models and Principles,2008,115:81-100.
[16]HAARNOJA T,ZHOU A,ABBEEL P,et al.Soft actor-critic:Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International Conference on Machine Learning.PMLR,2018:1861-1870.
[17]ZENG M,HAO W,DOBRE O A,et al.Massive MIMO-assisted mobile edge computing:Exciting possibilities for computation offloading[J].IEEE Vehicular Technology Magazine,2020,15(2):31-38.
[18]LIU K H,LIAO W.Intelligent offloading for multi-access edge computing:A new actor-critic approach[C]//2020 IEEE International Conference on Communications(ICC 2020).IEEE,2020:1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!