计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 62-69.doi: 10.11896/jsjkx.230300001
张建亮, 李洋, 朱春山, 薛泓林, 马军伟, 张丽霞, 毕胜
ZHANG Jianliang, LI Yang, ZHU Qingshan, XUE Hongling, MA Junwei, ZHANG Lixia, BI Sheng
摘要: 利用变电站电气设备运行时产生的时间序列数据,可以构建其未来运行状态的预测模型,从而提前发现异常数据,排除故障隐患,提升变电站的稳定性和可靠运行能力。Transformer模型是一种新兴的序列化数据处理模型,在面对较长序列时更具优势,可以满足故障预警前瞻性的需求。然而Transformer的模型结构使其具有较高的计算复杂度与空间占用率,难以直接应用到故障预警任务中。据此提出了一种基于时间序列预测的变压器设备故障预警方法,通过改进Transformer模型实现对设备运行数据的建模。该模型使用双塔式的编码器结构提取序列在频域和时域的特征,将时间特征数据和空间特征数据进行多维数据融合,从而提取更细致的信息。其次,用稀疏化处理的注意力机制代替标准的注意力机制,降低Transformer的计算复杂度和空间占用率,以满足实时预警的需求。在ETT变压器设备数据集上通过实验证明了所提模型的优越性,以及所改进的模块的必要性。相较于其他方法,该模型在多数预测任务中的MSE与MAE指数都达到了最优,尤其在长序列预测任务中表现出了更佳的性能,且预测速度更快。
中图分类号:
[1]ROMANIUK F A,RUMIANTSEV Y V,RUMIANTSEV V Y,et al.Formation of orthogonal components of input currents in microprocessor protections of electrical equipment[J].ENERGETIKA Proceedings of CIS Higher Education Institutions and Power Engineering Associations,2021,64(3):191-201. [2]LI Q,LI S,HE Z,et al.DeepRetina:layer segmentation of retina in OCT images using deep learning[J].Translational Vision Science & Technology,2020,9(2):61-61. [3]HAQUE S K M,ARDILA-REY J A,UMAR Y,et al.Application and suitability of polymeric materials as insulators in electrical equipment[J].Energies,2021,14(10):2758. [4]LOU J E.Developing an extended theory of planned behaviormodel for small E-waste recycling:an analysis of consumer behavior determinants[J].Journal of Environmental Engineering A,2022,11:71-86. [5]MAO K.Research on influence and prevention of electromagne-tic noise from high-power electrical equipment in substation [J].Electrical Drive Automation,2021,43(2):58-60. [6]XUN J W,ZHANG H,XIAO L P,et al.Model of Power Grid Alarm Information Classification Based on the GRU Neural Network [J].Computer & Digital Engineering,2019,47(6):1405-1408,1538. [7]REN B,ZHENG Y,WANG Y,et al.Research on fault location of secondary equipment in smart substation based on deep lear-ning[J].Power Syst.Technol,2021,45:713-721. [8]BIANCHI F M,MAIORINO E,KAMPFFMEYER M C,et al.An overview and comparative analysis of recurrent neural networks for short term load forecasting[J].arXiv:1705.04378,2017. [9]TULI S,CASALE G,JENNINGS N R.TranAD:Deep transformer networks for anomaly detection in multivariate time series data[J].arXiv:2201.07284,2022. [10]WANG Y L.Research and Implementation of Real-time FaultEarly Warning Method and System Based on Massive High-frequency Time Series Data [D].Jinan:Shandong University,2022. [11]WANG W L.Research on Fault Prediction Based on Multiva-riate Time Series Analysis [D].Jinan:Shandong University,2021. [12]HUANG W,ZHANG Z F.Early Warning of Combustion Cham-ber Faults Based on Multiple Linear Regression and Time Series Analysis [J].Turbine Technology,2021,63(3):212-214. [13]WENDE T,MINGGANG H U,CHUANKUN L I.Fault prediction based on dynamic model and grey time series model in chemical processes[J].Chinese Journal of Chemical Enginee-ring,2014,22(6):643-650. [14]XIAO L,LUO J,OUYANG C M.Research on coal mill fault prediction based on semi-supervised learning method[J],Thermal Power Generation,2019,48(4):121-127. [15]LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recur-rent neural network:Data-driven trafficforecasting[J].arXiv:1707.01926,2017. [16]LIU D.A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate timeseries prediction[J].Expert Syst.Appl,2020,143:113082. [17]QIU J,MA H,LEVY O,et al.Blockwise self-attention for long document understanding[J].arXiv:1911.02972,2019. [18]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectionaltransformers for language understanding[J].arXiv:1810.04805,2018. [19]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [20]CHEN L,LU K,RAJESWARAN A,et al.Decision transfor-mer:Reinforcement learning via sequence modeling[J].Advances in neural information processing systems,2021,34:15084-15097. [21]ZHOU T,MA Z,WEN Q,et al.FEDformer:Frequency en-hanced decomposed transformer for long-term series forecasting[J].arXiv:2201.12740,2022. [22]XU J,WU H,WANG J,et al.Anomaly transformer:Time series anomaly detection with association discrepancy[J].arXiv:2110.02642,2021. [23]WEN Q,ZHOU T,ZHANG C,et al.Transformers in time series:A survey[J].arXiv:2202.07125,2022. [24]CHILD R,GRAY S,RADFORD A,et al.Generating long se-quences with sparse transformers[J].arXiv:1904.10509,2019. [25]LI S,JIN X,XUAN Y,et al.Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5243-5235. [26]KITAEV N,KAISER Ł,LEVSKAYA A.Reformer:The efficient transformer[J].arXiv:2001.04451,2020. [27]ZHANG Z,YU L,LIANG X,et al.TransCT:dual-path transformer forlow dose computed tomography[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:55-64. [28]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010.. [29]GEHRING J,AULI M,GRANGIER D,et al.Convolutional sequence to sequence learning[C]//International Conference on Machine Learning.PMLR,2017:1243-1252. [30]TSAI Y H H,BAI S,YAMADA M,et al.Transformer Dissection:A Unified Understanding of Transformer's Attentionvia the Lens of Kernel[J].arXiv:1908.11775,2019. [31]BELTAGY I,PETERS M E,COHAN A.Longformer:Thelong-document transformer[J].arXiv:2004.05150,2020. [32]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115. [33]ARIYO A A,ADEWUMI A O,AYO C K.Stock price prediction using the ARIMA model[C]//2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation.IEEE,2014:106-112. [34]TAYLOR S J,LETHAM B.Forecasting at scale[J].The Ame-rican Statistician,2018,72(1):37-45. [35]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [36]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104. |
|