计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400101-7.doi: 10.11896/jsjkx.230400101
张小青1, 王青旺1, 瞿信1, 沈世全2, 吴长义3, 刘菊4
ZHANG Xiaoqing1, WANG Qingwang1, QU Xin1, SHEN Shiquan2, WU Changyi3, LIU Ju4
摘要: 道路中心线作为抽象类,无明确显性特征,进而造成模型无法准确提取道路中心线。针对该问题,文中将道路中心线提取建模为语义分割任务,并根据道路中心线的线性结构特点提出了一种方向感知金字塔聚合网络(Direction-aware Pyramidal Aggregation Network,DAPANet)。首先,针对道路中心线的空间分布特性及结构特点,设计了方向感知模块(Direction-aware Module,DAM),在主干网络(ResNet18)最后输出的4个层级上分别使用4个方向感知层提取道路中心线的方向特征。然后,进一步设计融合多向性特征的金字塔聚合模块(Pyramid Aggregation Module,PAM),融合4个层级提取到的结构特征,得到更具有鲁棒性的道路中心线特征。最后,在无人机平台下采集的真实数据上进行了实验,实验结果显示所提出的DAPANet取得了84.7%的mIoU和98.6%的Precision,道路中心线的IoU达到77.28%,性能优于其他先进的对比方法,证明了所提方法对提取道路中心线的有效性。
中图分类号:
[1]WU H B,QIU W M,WANG J,et al.Intelligent multi-track inspection robot inspection system for urban rail vehicles[J].Locomotive Electric Drive,2022(1):45-52. [2]ZHU J Y,LI P,LI X,et al.Intelligent inspection robot positioning system for urban rail vehicles[J].Railway Transport and Economy,2023,45(1):130-136. [3]ZHAO X T,HU K,LU X P,et al.A method for fine detection of geological hazards in mines by low altitude aerial photography with unmanned aerial vehicles[J].Survey and Mapping Science,2014,39(6):49-52. [4]PAN L,GUO T T.Intelligent inspection application of naturalgas long-distance pipeline by drones[J].Chemical Management,2023,653(2):124-126. [5]ZHU C,ZHU J,BU T,et al.Monitoring and Identification of Road Construction Safety Factors via UAV[J].Sensors,2022,22(22):8797. [6]SHERSTJUK V,ZHARIKOVA M,SOKOL I.Forest fire monitoring system based on UAV team,remote sensing,and image processing[C]//Procedings of IEEE Conference on Data Stream Mining and Processing(DSMP).2018:590-594. [7]MIAO Z,WANG B,SHI W,et al.A semi-automatic method for road centerline extraction from VHR images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(11):1856-1860. [8]CHENG G,WANG Y,XU S,et al.Automatic road detectionand centerline extraction via cascaded end-to-end convolutional neural network[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(6):3322-3337. [9]SHAO Z,ZHOU Z,HUANG X,et al.MRENet:Simultaneousextraction of road surface and road centerline in complex urban scenes from very high-resolution images[J].Remote Sensing,2021,13(2):239. [10]YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//European Conference on Computer Vision(ECCV).2018:325-341. [11]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//European Conference on Computer Vision(ECCV).2018:405-420. [12]WANG Y,ZHOU Q,LIU J,et al.Lednet:A lightweight encoder-decoder network for real-time semantic segmentation[C]//International Conference on Image Processing(ICIP).IEEE,2019:1860-1864. [13]SHI W,MIAO Z,DEBAYLE J.An integrated method for urban main-road centerline extraction from optical remotely sensed imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(6):3359-3372. [14]DAI J,MA R,GONG L,et al.A model-driven-to-sample-driven method for rural road extraction[J].Remote Sensing,2021,13(8):1417. [15]LIU R,MIAO Q,SONG J,et al.Multiscale road centerlines extraction from high-resolution aerial imagery[J].Neurocomputing,2019,329:384-396. [16]LIAN R,HUANG L.DeepWindow:Sliding window based ondeep learning for road extraction from remote sensing images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:1905-1916. [17]DONG G,YAN Y,SHEN C,et al.Real-time high-performance semantic image segmentation of urban street scenes[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(6):3258-3274. [18]LI S,YAN Q,SHI W,et al.HoloParser:Holistic Visual Parsing for Real-time Semantic Segmentation in Autonomous Driving[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-15. [19]ZOU W,HUA G,ZHUANG Y,et al.Real-time Passable Area Segmentation with Consumer RGB-D Cameras for the Visually Impaired[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-11. [20]YU C,GAO C,WANG J,et al.Bisenet v2:Bilateral networkwith guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129:3051-3068. [21]FAB M,LAI S,HUANG J,et al.Rethinkingbisenet for real-time semantic segmentation[C]//Conference on Computer Vision and Pattern Recognition(CVPR).2021:9716-9725. [22]PAN H,HONG Y,SUN W,et al.Deep dual-resolution net-works for real-time and accurate semantic segmentation of traffic scenes[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(3):3348-3460. [23]XU J,XIONG Z,BHATTACHARYYA S P.Pidnet:A real-time semantic segmentation network inspired from pid controller[J].arXiv:2206.02066,2022. [24]ELHASSAN M A M,YANG C,HUANG C,et al.SPFNet:Subspace Pyramid Fusion Network for Semantic Segmentation[J].arXiv:2204.01278,2022. [25]SHI M,SHEN J,YI Q,et al.LMFFNet:A well-balanced lightweight network for fast and accurate semantic segmentation[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(6):3205-3219. [26]ELHASSAN M A M,YANG C,HUANG C,et al.SS-FPN:Scale-ware Strip Attention Guided Feature Pyramid Network for Real-time Semantic Segmentation[J].arXiv:2206.07298,2022. [27]SUN T,DI Z,CHE P,et al.Leveraging crowdsourcedgps datafor road extraction from aerial imagery[C]//Conference on Computer Vision and Pattern Recognition(CVPR).2019:7509-7518. [28]MEI J,LI R J,GAO W,et al.CoANet:Connectivity attentionnetwork for road extraction from satellite imagery[J].IEEE Transactions on Image Processing,2021,30:8540-8552. [29]WANG J,CHEN K,XU R,et al.Carafe:Content-aware reassembly of features[C]//International Conference on Computer Vision(ICCV).2019:3007-3016. [30]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//International Conference on Computer Vision(ICCV).2017:2980-2988. |
|